Skip to main content

Benign 1,25-Dihydroxyvitamin D–Mediated Hypercalcemia

  • Chapter
  • First Online:
Hypercalcemia

Part of the book series: Contemporary Endocrinology ((COE))

  • 572 Accesses

Abstract

Production of 1,25-dihydroxyvitamin D (1,25(OH)2D) is normally tightly regulated. Hypercalcemia, however, can result from overproduction or under-metabolism of 1,25(OH)2D. Several disorders are associated with 1,25-dihydroxyvitamin D-mediated hypercalcemia. These can be categorized into congenital or acquired disorders. Acquired ectopic overproduction of 1,25(OH)2D can be subdivided into malignant or nonmalignant diseases. Nonmalignant disorders can be further classified into infectious or noninfectious granulomatous conditions, such as tuberculosis and sarcoid, respectively. This chapter provides an overview of vitamin D production and metabolism, as well as the presentation, etiology, and diagnosis and treatment of hypercalcemia related to benign 1,25(OH)2D-mediated hypercalcemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev. 2016;37(5):521–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lafferty FW. Differential diagnosis of hypercalcemia. J Bone Miner Res. 1991;6 Suppl 2:S51–9; discussion S61.

    CAS  PubMed  Google Scholar 

  3. Webb AR, DeCosta BR, Holick MF. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab. 1989;68(5):882–7.

    Article  CAS  PubMed  Google Scholar 

  4. Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocr Rev. 1989;10(3):294–307.

    Article  CAS  PubMed  Google Scholar 

  5. Mawer EB, Backhouse J, Holman CA, Lumb GA, Stanbury SW. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci. 1972;43(3):413–31.

    Article  CAS  PubMed  Google Scholar 

  6. Heaney RP, Horst RL, Cullen DM, Armas LA. Vitamin D3 distribution and status in the body. J Am Coll Nutr. 2009;28(3):252–6.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta RP, Hollis BW, Patel SB, Patrick KS, Bell NH. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J Bone Miner Res. 2004;19(4):680–8.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer MB, Pike JW. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression. J Steroid Biochem Mol Biol. 2020;196:105500.

    Article  CAS  PubMed  Google Scholar 

  11. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2014;55(1):13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacobs TP, Kaufman M, Jones G, Kumar R, Schlingmann KP, Shapses S, et al. A lifetime of hypercalcemia and hypercalciuria, finally explained. J Clin Endocrinol Metab. 2014;99(3):708–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(5):410–21.

    Article  CAS  PubMed  Google Scholar 

  14. Adams JS, Rafison B, Witzel S, Reyes RE, Shieh A, Chun R, et al. Regulation of the extrarenal CYP27B1-hydroxylase. J Steroid Biochem Mol Biol. 2014;144 Pt A:22–7.

    Article  PubMed  CAS  Google Scholar 

  15. Krutzik SR, Hewison M, Liu PT, Robles JA, Stenger S, Adams JS, et al. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J Immunol. 2008;181(10):7115–20.

    Article  CAS  PubMed  Google Scholar 

  16. Montoya D, Inkeles MS, Liu PT, Realegeno S, Teles RM, Vaidya P, et al. IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med. 2014;6(250):250ra114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys. 2012;523(1):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci. 2010;47(4):181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernando N, Pastor-Arroyo EM, Marks J, Schnitzbauer U, Knopfel T, Burki M, et al. 1,25(OH)2 vitamin D3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol. 2021;599:1131–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar R, Tebben PJ, Thompson JR. Vitamin D and the kidney. Arch Biochem Biophys. 2012;523(1):77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sneddon WB, Barry EL, Coutermarsh BA, Gesek FA, Liu F, Friedman PA. Regulation of renal parathyroid hormone receptor expression by 1, 25-dihydroxyvitamin D3 and retinoic acid. Cell Physiol Biochem. 1998;8(5):261–77.

    Article  CAS  PubMed  Google Scholar 

  22. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140(11):4982–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep. 2012;10(2):151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96S.

    Article  CAS  PubMed  Google Scholar 

  25. Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem. 2003;88(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  26. Beckerman P, Silver J. Vitamin D and the parathyroid. Am J Med Sci. 1999;317(6):363–9.

    CAS  PubMed  Google Scholar 

  27. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33):30337–50.

    Article  CAS  PubMed  Google Scholar 

  28. Hewison M. Antibacterial effects of vitamin D. Nat Rev Endocrinol. 2011;7(6):337–45.

    Article  CAS  PubMed  Google Scholar 

  29. Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008;4(2):80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bishop E, Ismailova A, Dimeloe SK, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020;5:e10405.

    Google Scholar 

  31. Goltzman D. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, et al., editors. Approach to hypercalcemia. South Dartmouth: Endotext; 2000.

    Google Scholar 

  32. Taylor RL, Lynch HJ Jr, Wysor WG Jr. Seasonal influence of sunlight on the hypercalcemia of sarcoidosis. Am J Med. 1963;34:221–7.

    Article  CAS  PubMed  Google Scholar 

  33. Sodhi A, Aldrich T. Vitamin D supplementation: not so simple in sarcoidosis. Am J Med Sci. 2016;352(3):252–7.

    Article  PubMed  Google Scholar 

  34. Sarathi V, Karethimmaiah H, Goel A. High-dose vitamin D supplementation precipitating hypercalcemic crisis in granulomatous disorders. Indian J Endocrinol Metab. 2017;21(6):815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hypercalcaemia in infants and vitamin D. Br Med J. 1956;2(4985):149.

    Google Scholar 

  36. Carpenter TO. CYP24A1 loss of function: clinical phenotype of monoallelic and biallelic mutations. J Steroid Biochem Mol Biol. 2017;173:337–40.

    Article  CAS  PubMed  Google Scholar 

  37. Brancatella A, Cappellani D, Kaufmann M, Borsari S, Piaggi P, Baldinotti F, et al. Do the heterozygous carriers of a CYP24A1 mutation display a different biochemical phenotype than wild types? J Clin Endocrinol Metab. 2021;106:708–17.

    Article  PubMed  Google Scholar 

  38. Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al. Autosomal-recessive mutations in <em>SLC34A1</em> encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14.

    Article  CAS  PubMed  Google Scholar 

  39. Morris CA, Braddock SR. Health care supervision for children with Williams syndrome. Pediatrics. 2020;145(2):e20193761.

    Article  PubMed  Google Scholar 

  40. Sindhar S, Lugo M, Levin MD, Danback JR, Brink BD, Yu E, et al. Hypercalcemia in patients with Williams-Beuren syndrome. J Pediatr. 2016;178:254–60.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garabédian M, Jacqz E, Guillozo H, Grimberg R, Guillot M, Gagnadoux MF, et al. Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and an elfin facies. N Engl J Med. 1985;312(15):948–52.

    Article  PubMed  Google Scholar 

  42. Culler FL, Jones KL, Deftos LJ. Impaired calcitonin secretion in patients with Williams syndrome. J Pediatr. 1985;107(5):720–3.

    Article  CAS  PubMed  Google Scholar 

  43. Pagan AJ, Ramakrishnan L. The formation and function of granulomas. Annu Rev Immunol. 2018;36:639–65.

    Article  CAS  PubMed  Google Scholar 

  44. Schilder AM. Wegener’s Granulomatosis vasculitis and granuloma. Autoimmun Rev. 2010;9(7):483–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gianella F, Hsia C, Sakhaee K, editors. The role of vitamin D in sarcoidosis; 2020.

    Google Scholar 

  46. Harrell GT, Fisher S. Blood chemical changes in Boeck’s sarcoid with particular reference to protein, calcium and phosphatase values. J Clin Invest. 1939;18(6):687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bell NH, Gill JR Jr, Bartter FC. On the abnormal calcium absorption in sarcoidosis. Evidence for increased sensitivity to vitamin D. Am J Med. 1964;36:500–13.

    Article  CAS  PubMed  Google Scholar 

  48. Albright F, Carroll EL, Dempsey EF, Henneman PH. The cause of hypercalcuria in sarcoid and its treatment with cortisone and sodium phytate. J Clin Invest. 1956;35(11):1229–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bell NH, Stern PH, Pantzer E, Sinha TK, DeLuca HF. Evidence that increased circulating 1 alpha, 25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J Clin Invest. 1979;64(1):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Papapoulos SE, Clemens TL, Fraher LJ, Lewin IG, Sandler LM, O'Riordan JL. 1, 25-dihydroxycholecalciferol in the pathogenesis of the hypercalcaemia of sarcoidosis. Lancet. 1979;1(8117):627–30.

    Article  CAS  PubMed  Google Scholar 

  51. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.

    Article  CAS  PubMed  Google Scholar 

  52. Maesaka JK, Batuman V, Pablo NC, Shakamuri S. Elevated 1,25-dihydroxyvitamin D levels: occurrence with sarcoidosis with end-stage renal disease. Arch Intern Med. 1982;142(6):1206–7.

    Article  CAS  PubMed  Google Scholar 

  53. Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest. 1983;72(5):1856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams JS, Singer FR, Gacad MA, Sharma OP, Hayes MJ, Vouros P, et al. Isolation and structural identification of 1,25-dihydroxyvitamin D3 produced by cultured alveolar macrophages in sarcoidosis. J Clin Endocrinol Metab. 1985;60(5):960–6.

    Article  CAS  PubMed  Google Scholar 

  55. Mason RS, Frankel T, Chan YL, Lissner D, Posen S. Vitamin D conversion by sarcoid lymph node homogenate. Ann Intern Med. 1984;100(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  56. Inui N, Murayama A, Sasaki S, Suda T, Chida K, Kato S, et al. Correlation between 25-hydroxyvitamin D3 1 alpha-hydroxylase gene expression in alveolar macrophages and the activity of sarcoidosis. Am J Med. 2001;110(9):687–93.

    Article  CAS  PubMed  Google Scholar 

  57. Adams JS, Ren SY, Arbelle JE, Horiuchi N, Gray RW, Clemens TL, et al. Regulated production and intracrine action of 1,25-dihydroxyvitamin D3 in the chick myelomonocytic cell line HD-11. Endocrinology. 1994;134(6):2567–73.

    Article  CAS  PubMed  Google Scholar 

  58. Adams JS, Gacad MA. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J Exp Med. 1985;161(4):755–65.

    Article  CAS  PubMed  Google Scholar 

  59. Adams JS, Gacad MA, Diz MM, Nadler JL. A role for endogenous arachidonate metabolites in the regulated expression of the 25-hydroxyvitamin D-1-hydroxylation reaction in cultured alveolar macrophages from patients with sarcoidosis. J Clin Endocrinol Metab. 1990;70(3):595–600.

    Article  CAS  PubMed  Google Scholar 

  60. Reichel H, Koeffler HP, Barbers R, Norman AW. Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and from patients with pulmonary sarcoidosis. J Clin Endocrinol Metab. 1987;65(6):1201–9.

    Article  CAS  PubMed  Google Scholar 

  61. Monkawa T, Yoshida T, Hayashi M, Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000;58(2):559–68.

    Article  CAS  PubMed  Google Scholar 

  62. Dusso AS, Kamimura S, Gallieni M, Zhong M, Negrea L, Shapiro S, et al. gamma-Interferon-induced resistance to 1,25-(OH)2 D3 in human monocytes and macrophages: a mechanism for the hypercalcemia of various granulomatoses. J Clin Endocrinol Metab. 1997;82(7):2222–32.

    CAS  PubMed  Google Scholar 

  63. Ren S, Nguyen L, Wu S, Encinas C, Adams JS, Hewison M. Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J Biol Chem. 2005;280(21):20604–11.

    Article  CAS  PubMed  Google Scholar 

  64. Zeimer HJ, Greenaway TM, Slavin J, Hards DK, Zhou H, Doery JC, et al. Parathyroid-hormone-related protein in sarcoidosis. Am J Pathol. 1998;152(1):17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bosch X. Hypercalcemia due to endogenous overproduction of 1,25-dihydroxyvitamin D in Crohn’s disease. Gastroenterology. 1998;114(5):1061–5.

    Article  CAS  PubMed  Google Scholar 

  66. Inayat F, Saleem S, Mohyudin A, Khan Z. Hypercalcaemia due to isolated elevation of 1,25-dihydroxyvitamin D in patients with Crohn’s disease. BMJ Case Rep. 2019;12(9):e230099.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ioachimescu AG, Bauer TW, Licata A. Active crohn disease and hypercalcemia treated with infliximab: case report and literature review. Endocr Pract. 2008;14(1):87–92.

    Article  PubMed  Google Scholar 

  68. Tuohy KA, Steinman TI. Hypercalcemia due to excess 1,25-dihydroxyvitamin D in Crohn's disease. Am J Kidney Dis. 2005;45(1):e3–6.

    Article  PubMed  Google Scholar 

  69. Zemrak F, McNeil L, Peden N. Rennies, Crohn’s disease and severe hypercalcaemia. BMJ Case Rep. 2010;2010:bcr0720103138.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Edelson GW, Talpos GB, Bone HG 3rd. Hypercalcemia associated with Wegener’s granulomatosis and hyperparathyroidism: etiology and management. Am J Nephrol. 1993;13(4):275–7.

    Article  CAS  PubMed  Google Scholar 

  71. Bosch X, Lopez-Soto A, Morello A, Olmo A, Urbano-Marquez A. Vitamin D metabolite-mediated hypercalcemia in Wegener's granulomatosis. Mayo Clin Proc. 1997;72(5):440–4.

    Article  CAS  PubMed  Google Scholar 

  72. Shaker JL, Redlin KC, Warren GV, Findling JW. Case report: hypercalcemia with inappropriate 1,25-dihydroxyvitamin D in Wegener’s granulomatosis. Am J Med Sci. 1994;308(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  73. Al-Ali H, Yabis AA, Issa E, Salem Z, Tawil A, Khoury N, et al. Hypercalcemia in Langerhans’ cell granulomatosis with elevated 1,25 dihydroxyvitamin D (calcitriol) level. Bone. 2002;30(1):331–4.

    Article  CAS  PubMed  Google Scholar 

  74. Zornitzki T, Schattner A, Knobler H. Hypercalcemia in isolated hypothalamic-pituitary Langerhans cell histiocytosis with no bone lesions. Am J Med. 2004;117(7):533–4.

    Article  PubMed  Google Scholar 

  75. Burden AD, Krafchik BR. Subcutaneous fat necrosis of the newborn: a review of 11 cases. Pediatr Dermatol. 1999;16(5):384–7.

    Article  CAS  PubMed  Google Scholar 

  76. Cook JS, Stone MS, Hansen JR. Hypercalcemia in association with subcutaneous fat necrosis of the newborn: studies of calcium-regulating hormones. Pediatrics. 1992;90(1 Pt 1):93–6.

    Article  CAS  PubMed  Google Scholar 

  77. Finne PH, Sanderud J, Aksnes L, Bratlid D, Aarskog D. Hypercalcemia with increased and unregulated 1,25-dihydroxyvitamin D production in a neonate with subcutaneous fat necrosis. J Pediatr. 1988;112(5):792–4.

    Article  CAS  PubMed  Google Scholar 

  78. Farooque A, Moss C, Zehnder D, Hewison M, Shaw NJ. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in subcutaneous fat necrosis. Br J Dermatol. 2009;160(2):423–5.

    Article  CAS  PubMed  Google Scholar 

  79. Kruse K, Irle U, Uhlig R. Elevated 1,25-dihydroxyvitamin D serum concentrations in infants with subcutaneous fat necrosis. J Pediatr. 1993;122(3):460–3.

    Article  CAS  PubMed  Google Scholar 

  80. Agrawal N, Altiner S, Mezitis NH, Helbig S. Silicone-induced granuloma after injection for cosmetic purposes: a rare entity of calcitriol-mediated hypercalcemia. Case Rep Med. 2013;2013:807292.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Camuzard O, Dumas P, Foissac R, Fernandez J, David S, Balaguer T, et al. Severe granulomatous reaction associated with hypercalcemia occurring after silicone soft tissue augmentation of the buttocks: a case report. Aesthetic Plast Surg. 2014;38(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  82. Dangol GMS, Negrete H. Silicone-induced granulomatous reaction causing severe hypercalcemia: case report and literature review. Case Rep Nephrol. 2019;2019:9126172.

    PubMed  PubMed Central  Google Scholar 

  83. Eldrup E, Theilade S, Lorenzen M, Andreassen CH, Poulsen KH, Nielsen JE, et al. Hypercalcemia after cosmetic oil injections: unraveling etiology, pathogenesis, and severity. J Bone Miner Res. 2021;36:322–33.

    Article  CAS  PubMed  Google Scholar 

  84. Gyldenlove M, Rorvig S, Skov L, Hansen D. Severe hypercalcaemia, nephrocalcinosis, and multiple paraffinomas caused by paraffin oil injections in a young bodybuilder. Lancet. 2014;383(9934):2098.

    Article  PubMed  Google Scholar 

  85. Melnick S, Abaroa-Salvatierra A, Deshmukh M, Patel A. Calcitriol mediated hypercalcaemia with silicone granulomas due to cosmetic injection. BMJ Case Rep. 2016;2016:bcr2016217269.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hindi SM, Wang Y, Jones KD, Nussbaum JC, Chang Y, Masharani U, et al. A case of hypercalcemia and overexpression of CYP27B1 in skeletal muscle lesions in a patient with HIV infection after cosmetic injections with polymethylmethacrylate (PMMA) for wasting. Calcif Tissue Int. 2015;97(6):634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khanna P, Khatami A, Swiha M, Rachinsky I, Kassam Z, Berberich AJ. Severe hypercalcemia secondary to paraffin oil injections in a bodybuilder with significant findings on scintigraphy. AACE Clin Case Rep. 2020;6(5):e234–e8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Manfro AG, Lutzky M, Dora JM, Kalil MAS, Manfro RC. Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol. 2021;43:288–92.

    Article  PubMed  Google Scholar 

  89. Negri AL, Rosa Diez G, Del Valle E, Piulats E, Greloni G, Quevedo A, et al. Hypercalcemia secondary to granulomatous disease caused by the injection of methacrylate: a case series. Clin Cases Miner Bone Metab. 2014;11(1):44–8.

    PubMed  PubMed Central  Google Scholar 

  90. Solling ASK, Tougaard BG, Harslof T, Langdahl B, Brockstedt HK, Byg KE, et al. Non-parathyroid hypercalcemia associated with paraffin oil injection in 12 younger male bodybuilders: a case series. Eur J Endocrinol. 2018;178(6):K29–37.

    Article  PubMed  Google Scholar 

  91. Tachamo N, Donato A, Timilsina B, Nazir S, Lohani S, Dhital R, et al. Hypercalcemia associated with cosmetic injections: a systematic review. Eur J Endocrinol. 2018;178(4):425–30.

    Article  CAS  PubMed  Google Scholar 

  92. Woywodt A, Schneider W, Goebel U, Luft FC. Hypercalcemia due to talc granulomatosis. Chest. 2000;117(4):1195–6.

    Article  CAS  PubMed  Google Scholar 

  93. Stoeckle JD, Hardy HL, Weber AL. Chronic beryllium disease. Long-term follow-up of sixty cases and selective review of the literature. Am J Med. 1969;46(4):545–61.

    Article  CAS  PubMed  Google Scholar 

  94. Moraitis AG, Hewison M, Collins M, Anaya C, Holick MF. Hypercalcemia associated with mineral oil-induced sclerosing paraffinomas. Endocr Pract. 2013;19(2):e50–6.

    Article  PubMed  Google Scholar 

  95. Gates S, Shary J, Turner RT, Wallach S, Bell NH. Abnormal calcium metabolism caused by increased circulating 1,25-dihydroxyvitamin D in a patient with rheumatoid arthritis. J Bone Miner Res. 1986;1(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  96. Hardy P, Moriniere PH, Tribout B, Hamdini N, Marie A, Bouffandeau B, et al. Liver granulomatosis is not an exceptional cause of hypercalcemia with hypoparathyroidism in dialysis patients. J Nephrol. 1999;12(6):398–403.

    CAS  PubMed  Google Scholar 

  97. Kallas M, Green F, Hewison M, White C, Kline G. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. J Clin Endocrinol Metab. 2010;95(7):3111–7.

    Article  CAS  PubMed  Google Scholar 

  98. Zouras S, Surya A, Abusahmin H, Hassan M, Humphreys E, Nagaraja P, et al. Granulomatous disease of unusual sites causing hypercalcemia: two case reports. AACE Clin Case Rep. 2019;5(1):e44–e9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Abreu MT, Kantorovich V, Vasiliauskas EA, Gruntmanis U, Matuk R, Daigle K, et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut. 2004;53(8):1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG clinical guideline: management of Crohn’s disease in adults. Am J Gastroenterol. 2018;113(4):481–517.

    Article  PubMed  Google Scholar 

  101. Helvaci O, Erdogan Yon ME, Kucuk H, Tufan A, Guz G. Hypercalcemia in a patient with granulomatosis with polyangiitis. Am J Kidney Dis. 2020;76(5):A18–20.

    Article  PubMed  Google Scholar 

  102. Allen CE, Beverley PCL, Collin M, Diamond EL, Egeler RM, Ginhoux F, et al. The coming of age of Langerhans cell histiocytosis. Nat Immunol. 2020;21(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  103. Allen CE, Merad M, McClain KL. Langerhans-cell histiocytosis. N Engl J Med. 2018;379(9):856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jubinsky PT. Hypercalcemia in Langerhans cell histiocytosis: is it therapy-related? J Pediatr Hematol Oncol. 2003;25(2):176–9.

    Article  PubMed  Google Scholar 

  105. Jurney TH. Hypercalcemia in a patient with eosinophilic granuloma. Am J Med. 1984;76(3):527–8.

    Article  CAS  PubMed  Google Scholar 

  106. McLean TW, Pritchard J. Langerhans cell histiocytosis and hypercalcemia: clinical response to indomethacin. J Pediatr Hematol Oncol. 1996;18(3):318–20.

    Article  CAS  PubMed  Google Scholar 

  107. Stefanko NS, Drolet BA. Subcutaneous fat necrosis of the newborn and associated hypercalcemia: a systematic review of the literature. Pediatr Dermatol. 2019;36(1):24–30.

    Article  PubMed  Google Scholar 

  108. Schofield R, McMaster D, Cotterill A, Musthaffa Y. Lessons learnt in the management of hypercalcaemia secondary to subcutaneous fat necrosis of the newborn. J Paediatr Child Health. 2021;57:947–9.

    Article  PubMed  Google Scholar 

  109. Del Pozzo-Magana BR, Ho N. Subcutaneous fat necrosis of the newborn: a 20-year retrospective study. Pediatr Dermatol. 2016;33(6):e353–e5.

    Article  PubMed  Google Scholar 

  110. Sharata H, Postellon DC, Hashimoto K. Subcutaneous fat necrosis, hypercalcemia, and prostaglandin E. Pediatr Dermatol. 1995;12(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  111. de Bellefroid J, Vandecasteele S, Van Cauwenberge S, Bouillon R, Van den Bruel A. Textiloma-induced 1,25-dihydroxyvitamin D-mediated hypercalcemia: a case report and literature study. J Endocr Soc. 2019;3(11):2158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang J, Sellmeyer DE. Particle disease: a unique cause of hypercalcemia. Osteoporos Int. 2020;31(12):2481–4.

    Article  CAS  PubMed  Google Scholar 

  113. Gkonos PJ, London R, Hendler ED. Hypercalcemia and elevated 1,25-dihydroxyvitamin D levels in a patient with end-stage renal disease and active tuberculosis. N Engl J Med. 1984;311(26):1683–5.

    Article  CAS  PubMed  Google Scholar 

  114. Felsenfeld AJ, Drezner MK, Llach F. Hypercalcemia and elevated calcitriol in a maintenance dialysis patient with tuberculosis. Arch Intern Med. 1986;146(10):1941–5.

    Article  CAS  PubMed  Google Scholar 

  115. Wada T, Hanibuchi M, Saijo A. Acute hypercalcemia and hypervitaminosis D associated with pulmonary tuberculosis in an elderly patient : a case report and review of the literature. J Med Invest. 2019;66(3.4):351–4.

    Article  PubMed  Google Scholar 

  116. Rajendra A, Mishra AK, Francis NR, Carey RA. Severe hypercalcemia in a patient with pulmonary tuberculosis. J Family Med Prim Care. 2016;5(2):509–11.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Saggese G, Bertelloni S, Baroncelli GI, Di Nero G. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.

    CAS  PubMed  Google Scholar 

  118. Rizwan A, Islam N. Middle aged male with pulmonary tuberculosis and refractory hypercalcemia at a tertiary care centre in South East Asia: a case report. Cases J. 2009;2:6316.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ryzen E, Rea TH, Singer FR. Hypercalcemia and abnormal 1,25-dihydroxyvitamin D concentrations in leprosy. Am J Med. 1988;84(2):325–9.

    Article  CAS  PubMed  Google Scholar 

  120. Couri CE, Foss NT, Dos Santos CS, de Paula FJ. Hypercalcemia secondary to leprosy. Am J Med Sci. 2004;328(6):357–9.

    Article  PubMed  Google Scholar 

  121. Hoffman VN, Korzeniowski OM. Leprosy, hypercalcemia, and elevated serum calcitriol levels. Ann Intern Med. 1986;105(6):890–1.

    Article  CAS  PubMed  Google Scholar 

  122. Delahunt JW, Romeril KE. Hypercalcemia in a patient with the acquired immunodeficiency syndrome and Mycobacterium avium intracellulare infection. J Acquir Immune Defic Syndr (1988). 1994;7(8):871–2.

    CAS  Google Scholar 

  123. Tsao YT, Lee SW, Hsu JC, Ho FM, Wang WJ. Surviving a crisis of HIV-associated immune reconstitution syndrome. Am J Emerg Med. 2012;30(8):1661 e5–7.

    Article  Google Scholar 

  124. Liang KV, Ryu JH, Matteson EL. Histoplasmosis with tenosynovitis of the hand and hypercalcemia mimicking sarcoidosis. J Clin Rheumatol. 2004;10(3):138–42.

    Article  PubMed  Google Scholar 

  125. Sonawalla A, Tas V, Raisingani M, Tas E. A rare and potentially fatal etiology of hypercalcemia in an infant. Case Rep Endocrinol. 2019;2019:4270852.

    PubMed  PubMed Central  Google Scholar 

  126. Gurram PR, Castillo NE, Esquer Garrigos Z, Vijayvargiya P, Abu Saleh OM. A dimorphic diagnosis of a pleomorphic disease: an unusual cause of hypercalcemia. Am J Med. 2020;133(11):e659–e62.

    Article  CAS  PubMed  Google Scholar 

  127. Lopez J, Raval M, Mohan M. Intractable hypercalcemia in a patient with multiple myeloma: an infectious etiology. Transpl Infect Dis. 2020;22(5):e13354.

    Article  PubMed  Google Scholar 

  128. Almeida RM, Cezana L, Tsukumo DM, de Carvalho-Filho MA, Saad MJ. Hypercalcemia in a patient with disseminated paracoccidioidomycosis: a case report. J Med Case Reports. 2008;2:262.

    Article  PubMed Central  Google Scholar 

  129. Kantarjian HM, Saad MF, Estey EH, Sellin RV, Samaan NA. Hypercalcemia in disseminated candidiasis. Am J Med. 1983;74(4):721–4.

    Article  CAS  PubMed  Google Scholar 

  130. Ahmed B, Jaspan JB. Case report: hypercalcemia in a patient with AIDS and Pneumocystis carinii pneumonia. Am J Med Sci. 1993;306(5):313–6.

    Article  CAS  PubMed  Google Scholar 

  131. Chen WC, Chang SC, Wu TH, Yang WC, Tarng DC. Hypercalcemia in a renal transplant recipient suffering with Pneumocystis carinii pneumonia. Am J Kidney Dis. 2002;39(2):E8.

    Article  PubMed  Google Scholar 

  132. Taylor LN, Aesif SW, Matson KM. A case of Pneumocystis pneumonia, with a granulomatous response and vitamin D-mediated hypercalcemia, presenting 13 years after renal transplantation. Transpl Infect Dis. 2019;21(3):e13081.

    Article  PubMed  Google Scholar 

  133. Binet Q, Mairesse J, Vanthuyne M, Marot JC, Wieers G. Hypercalcemia heralding pneumocystis jirovecii pneumonia in an HIV-seronegative patient with diffuse cutaneous systemic sclerosis. Mycopathologia. 2019;184(6):787–93.

    Article  PubMed  Google Scholar 

  134. Hajji K, Dalle F, Harzallah A, Tanter Y, Rifle G, Mousson C. Vitamin D metabolite-mediated hypercalcemia with suppressed parathormone concentration in Pneumocystis jiroveci pneumonia after kidney transplantation. Transplant Proc. 2009;41(8):3320–2.

    Article  CAS  PubMed  Google Scholar 

  135. Yau AA, Farouk SS. Severe hypercalcemia preceding a diagnosis of Pneumocystis jirovecii pneumonia in a liver transplant recipient. BMC Infect Dis. 2019;19(1):739.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chatzikyrkou C, Clajus C, Haubitz M, Hafer C. Hypercalcemia and pneumocystis Pneumonia after kidney transplantation: report of an exceptional case and literature review. Transpl Infect Dis. 2011;13(5):496–500.

    Article  CAS  PubMed  Google Scholar 

  137. VanSickle JS, Srivastava T, Alon US. Life-threatening hypercalcemia during prodrome of pneumocystis jiroveci pneumonia in an immunocompetent infant. Glob Pediatr Health. 2017;4:2333794X17705955.

    PubMed  PubMed Central  Google Scholar 

  138. Hamroun A, Lenain R, Bui Nguyen L, Chamley P, Loridant S, Neugebauer Y, et al. Hypercalcemia is common during pneumocystis pneumonia in kidney transplant recipients. Sci Rep. 2019;9(1):12508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Spindel SJ, Hamill RJ, Georghiou PR, Lacke CE, Green LK, Mallette LE. Case report: vitamin D-mediated hypercalcemia in fungal infections. Am J Med Sci. 1995;310(2):71–6.

    Article  CAS  PubMed  Google Scholar 

  140. Ali MY, Gopal KV, Llerena LA, Taylor HC. Hypercalcemia associated with infection by Cryptococcus neoformans and Coccidioides immitis. Am J Med Sci. 1999;318(6):419–23.

    Article  CAS  PubMed  Google Scholar 

  141. Wang IK, Shen TY, Lee KF, Chang HY, Lin CL, Chuang FR. Hypercalcemia and elevated serum 1.25-dihydroxyvitamin D in an end-stage renal disease patient with pulmonary cryptococcosis. Ren Fail. 2004;26(3):333–8.

    Article  PubMed  CAS  Google Scholar 

  142. Huang JC, Kuo MC, Hwang SJ, Hwang DY, Chen HC. Vitamin D-mediated hypercalcemia as the initial manifestation of pulmonary cryptococcosis in an HIV-uninfected patient. Intern Med. 2012;51(13):1793–6.

    Article  CAS  PubMed  Google Scholar 

  143. Bosch X. Hypercalcemia due to endogenous overproduction of active vitamin D in identical twins with cat-scratch disease. JAMA. 1998;279(7):532–4.

    Article  CAS  PubMed  Google Scholar 

  144. Chan TY. Differences in vitamin D status and calcium intake: possible explanations for the regional variations in the prevalence of hypercalcemia in tuberculosis. Calcif Tissue Int. 1997;60(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  145. Adams JS, Modlin RL, Diz MM, Barnes PF. Potentiation of the macrophage 25-hydroxyvitamin D-1-hydroxylation reaction by human tuberculous pleural effusion fluid. J Clin Endocrinol Metab. 1989;69(2):457–60.

    Article  CAS  PubMed  Google Scholar 

  146. Cadranel J, Garabedian M, Milleron B, Guillozo H, Akoun G, Hance AJ. 1,25(OH)2D2 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis. J Clin Invest. 1990;85(5):1588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

    Article  CAS  PubMed  Google Scholar 

  148. Ryzen E, Singer FR. Hypercalcemia in leprosy. Arch Intern Med. 1985;145(7):1305–6.

    Article  CAS  PubMed  Google Scholar 

  149. Agrawal S, Goyal A, Agarwal S, Khadgawat R. Hypercalcaemia, adrenal insufficiency and bilateral adrenal histoplasmosis in a middle-aged man: a diagnostic dilemma. BMJ Case Rep. 2019;12(8):e231142.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Agrawal J, Bansal N, Arora A. Disseminated histoplasmosis in India presenting as addisonian crisis with epiglottis involvement. IDCases. 2020;21:e00844.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tresoldi AT, Pereira RM, Castro LC, Rigatto SZ, Belangero VM. Hypercalcemia and multiple osteolytic lesions in a child with disseminated paracoccidioidomycosis and pulmonary tuberculosis. J Pediatr. 2005;81(4):349–52.

    Article  Google Scholar 

  152. Bansal N, Shah R, Patel A, Vaidya G, Pantangi P, Manocha D. Hypercalcemia as a primary manifestation of cryptococcal immune reconstitution syndrome-a rare presentation. Am J Emerg Med. 2015;33(4):598 e3–4.

    Article  Google Scholar 

  153. Kaufmann M, Gallagher JC, Peacock M, Schlingmann KP, Konrad M, DeLuca HF, et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab. 2014;99(7):2567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Crouser ED, Maier LA, Wilson KC, Bonham CA, Morgenthau AS, Patterson KC, et al. Diagnosis and detection of sarcoidosis. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2020;201(8):e26–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lopez-Sublet M, Caratti di Lanzacco L, Danser AHJ, Lambert M, Elourimi G, Persu A. Focus on increased serum angiotensin-converting enzyme level: from granulomatous diseases to genetic mutations. Clin Biochem. 2018;59:1–8.

    Article  CAS  PubMed  Google Scholar 

  156. von Unruh GE, Voss S, Sauerbruch T, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol. 2004;15(6):1567–73.

    Article  CAS  Google Scholar 

  157. Gibbs CJ, Peacock M. Hypercalcaemia due to sarcoidosis corrects with bisphosphonate treatment. Postgrad Med J. 1986;62(732):937–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kuchay MS, Mishra SK, Bansal B, Farooqui KJ, Sekhar L, Mithal A. Glucocorticoid sparing effect of zoledronic acid in sarcoid hypercalcemia. Arch Osteoporos. 2017;12(1):68.

    Article  PubMed  Google Scholar 

  159. Conron M, Young C, Beynon HL. Calcium metabolism in sarcoidosis and its clinical implications. Rheumatology (Oxford). 2000;39(7):707–13.

    Article  CAS  Google Scholar 

  160. Siltzbach LE. Effects of cortisone in sarcoidosis; a study of thirteen patients. Am J Med. 1952;12(2):139–60.

    Article  CAS  PubMed  Google Scholar 

  161. Paramothayan NS, Lasserson TJ, Jones PW. Corticosteroids for pulmonary sarcoidosis. Cochrane Database Syst Rev. 2005;(2):CD001114.

    Google Scholar 

  162. Sandler LM, Winearls CG, Fraher LJ, Clemens TL, Smith R, O'Riordan JL. Studies of the hypercalcaemia of sarcoidosis: effect of steroids and exogenous vitamin D3 on the circulating concentrations of 1,25-dihydroxy vitamin D3. Q J Med. 1984;53(210):165–80.

    CAS  PubMed  Google Scholar 

  163. Huybers S, Naber TH, Bindels RJ, Hoenderop JG. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G92–7.

    Article  CAS  PubMed  Google Scholar 

  164. Reid IR, Ibbertson HK. Evidence for decreased tubular reabsorption of calcium in glucocorticoid-treated asthmatics. Horm Res. 1987;27(4):200–4.

    Article  CAS  PubMed  Google Scholar 

  165. Suzuki Y, Ichikawa Y, Saito E, Homma M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism. 1983;32(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  166. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. 1999;160(2):736–55.

    Google Scholar 

  167. Siltzbach LE, Teirstein AS. Chloroquine therapy in 43 patients with intrathoracic and cutaneous sarcoidosis. Acta Med Scand Suppl. 1964;425:302–8.

    CAS  PubMed  Google Scholar 

  168. Sharma OP. Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis with neurological involvement. Arch Neurol. 1998;55(9):1248–54.

    Article  CAS  PubMed  Google Scholar 

  169. Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.

    Article  CAS  PubMed  Google Scholar 

  170. Barre PE, Gascon-Barre M, Meakins JL, Goltzman D. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.

    Article  CAS  PubMed  Google Scholar 

  171. O’Leary TJ, Jones G, Yip A, Lohnes D, Cohanim M, Yendt ER. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.

    Article  PubMed  Google Scholar 

  172. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.

    Article  CAS  PubMed  Google Scholar 

  173. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.

    Article  CAS  PubMed  Google Scholar 

  174. Adams JS, Sharma OP, Diz MM, Endres DB. Ketoconazole decreases the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia. J Clin Endocrinol Metab. 1990;70(4):1090–5.

    Article  CAS  PubMed  Google Scholar 

  175. Young C, Burrows R, Katz J, Beynon H. Hypercalcaemia in sarcoidosis. Lancet. 1999;353(9150):374.

    Article  CAS  PubMed  Google Scholar 

  176. Tebben PJ, Milliner DS, Horst RL, Harris PC, Singh RJ, Wu Y, et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab. 2012;97(3):E423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dinour D, Beckerman P, Ganon L, Tordjman K, Eisenstein Z, Holtzman EJ. Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J Urol. 2013;190(2):552–7.

    Article  CAS  PubMed  Google Scholar 

  178. Nesterova G, Malicdan MC, Yasuda K, Sakaki T, Vilboux T, Ciccone C, et al. 1,25-(OH)2D-24 hydroxylase (CYP24A1) deficiency as a cause of nephrolithiasis. Clin J Am Soc Nephrol. 2013;8(4):649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sayers J, Hynes AM, Srivastava S, Dowen F, Quinton R, Datta HK, et al. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin Kidney J. 2015;8(4):453–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang Z, Lin YS, Zheng XE, Senn T, Hashizume T, Scian M, et al. An inducible cytochrome P450 3A4-dependent vitamin D catabolic pathway. Mol Pharmacol. 2012;81(4):498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang Z, Wong T, Hashizume T, Dickmann LZ, Scian M, Koszewski NJ, et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability. Endocrinology. 2014;155(6):2052–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Pascussi JM, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest. 2005;115(1):177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hawkes CP, Li D, Hakonarson H, Meyers KE, Thummel KE, Levine MA. CYP3A4 induction by rifampin: an alternative pathway for vitamin D inactivation in patients with CYP24A1 mutations. J Clin Endocrinol Metab. 2017;102(5):1440–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim M. Maalouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maalouf, N.M., Song, L. (2022). Benign 1,25-Dihydroxyvitamin D–Mediated Hypercalcemia. In: Walker, M.D. (eds) Hypercalcemia. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-93182-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93182-7_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-93181-0

  • Online ISBN: 978-3-030-93182-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics