Skip to main content

Behavior of Pipeline Steels in Gaseous Hydrogen-Containing Mixtures

  • Chapter
  • First Online:
Mechanics and Control of Solids and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 164))

  • 618 Accesses

Abstract

The chapter provides an overview of the results of studying the effect of hydrogen in mixtures with gases on strength, ductility, fatigue crack growth rate, and fracture morphology of the most commonly used pipeline steels X70, X80. The main methods of testing susceptibility of pipeline steels to hydrogen following the standards are briefly discussed. The results obtained by various authors show that there is a strong influence of partial hydrogen in mixtures with gases. Fatigue crack growth rate increases many times, the fracture morphology changes, and a quasi-cleavage fracture mode is observed. At the same time, tensile strength and yield strength of smooth tensile specimens made of the base metal practically do not change. This, in turn, can lead to an incorrect interpretation of the results of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiyama, E., Li, S.: Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study 34(1–2), 103–112 (2016)

    Google Scholar 

  2. Alvaro, A., et al.: Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure. Mater. Sci. Eng., A 597, 29–36 (2014)

    Article  Google Scholar 

  3. Aly, O.F., Neto, M.M.: Stress corrosion cracking. In: Aliofkhazraei, M. (ed.) Developments in Corrosion Protection. IntechOpen Limited, London (2014)

    Google Scholar 

  4. Amoo, L.M., Fagbenle, R.L.: Hydrogen energy’s key contributions to the sustainable energy mix of a low-carbon future in Nigeria. Int. J. Sustain. Energ. 33(4), 742–765 (2014)

    Article  Google Scholar 

  5. Austen, I.M.: Effective stress intensities in stress corrosion cracking. Int. J. Fract. 12, 253–263 (1976)

    Article  Google Scholar 

  6. Beavers, J.A., Harle, B.A.: Mechanisms of high-pH and nearneutral-pH SCC of underground pipelines. Offshore Mech. Arct. Eng. 123, 147–151 (2003)

    Article  Google Scholar 

  7. Blagoeva, D.T., Hurst, R.C.: Application of the CEN (European Committee for Standardization) small punch creep testing code of practice to a representative repair welded P91 pip. Mater. Sci. Eng., A 510, 219–223 (2009)

    Article  Google Scholar 

  8. Briottet, L., Ez-Zaki, H.: Influence of hydrogen and oxygen impurity content in a natural gas/hydrogen blend on the toughness of an API X70 steel. In: Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, vol. 51685, V06BT06A036 (2018)

    Google Scholar 

  9. Briottet, L., Moro, I., Lemoine, P.: Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. Int. J. Hydrogen Energy 37(22), 17616–17623 (2012)

    Article  Google Scholar 

  10. Briottet, L., et al.: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int. J. Hydrogen Energy 37(11), 9423–9430 (2012)

    Article  Google Scholar 

  11. Capelle, J., Gilgert, J., Dmytrakh, I., Pluvinage, G.: Sensitivity of pipelines with steel api X52 to hydrogen embrittlement. Int. J. Hydrogen Energy 33(24), 7630–7641 (2008)

    Article  Google Scholar 

  12. Capelle, J., et al.: The effect of hydrogen concentration on fracture of pipeline steels in presence of a notch. Eng. Fract. Mech. 78(2), 364–373 (2011)

    Article  Google Scholar 

  13. Castello, P., et al.: Techno-economic assessment of hydrogen transmission & distribution systems in Europe in the medium and long term. European Commission, Joint Research Center (2005)

    Google Scholar 

  14. Charles, E.A., Parkins, R.N.: Generation of stress corrosion cracking environments at pipeline surfaces. Corrosion 51, 518–527 (1995)

    Article  Google Scholar 

  15. Cheng, Y.: Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines. Electrochim. Acta 52(7), 2661–2667 (2007)

    Article  Google Scholar 

  16. Chen, W.: Modeling and prediction of stress corrosion cracking of pipeline steels. In: Trends in Oil and Gas Corrosion Research and Technologies, pp. 707–748 (2017)

    Google Scholar 

  17. Cialone, H., Holbrook, J.: Sensitivity of steels to degradation in gaseous hydrogen. In: Raymond, L. (ed.) Hydrogen Embrittlement: Prevention and Control, pp. 134–152. ASTM International, West Conshohocken (1988)

    Chapter  Google Scholar 

  18. Dagdougui, H., et al.: Hazard and risk evaluation in hydrogen pipelines. Manag. Environ. Qual.: Int. J. 21(5), 712–725 (2010)

    Article  Google Scholar 

  19. Davani, R.K.Z., Miresmaeili, R., Soltanmohammadi, M.: Effect of thermomechanical parameters on mechanical properties of base metal and heat affected zone of X65 pipeline steel weld in the presence of hydrogen. Mater. Sci. Eng., A 718, 135–146 (2018)

    Article  Google Scholar 

  20. Dickinson, R.R., et al.: Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int. J. Hydrogen Energy 35(3), 1321–1329 (2010)

    Article  Google Scholar 

  21. Dmytrakh, I., Leshchak, R., Syrotyuk, A., Barna, R.: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel. Int. J. Hydrogen Energy 42(9), 6401–6408 (2017)

    Article  Google Scholar 

  22. Elboujdaini, M., Revie, R.W.: Metallurgical factors in stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC). J. Solid State Electrochem. 13, 1091–1099 (2009)

    Article  Google Scholar 

  23. Eliaz, N., et al.: Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Eng. Fail. Anal. 9(2), 167–184 (2002)

    Article  Google Scholar 

  24. Fang, B.Y., Atrens, A., Wang, J.Q., Han, E.H., Zhu, Z.Y., Ke, W.: Review of stress corrosion cracking of pipeline steels in “low’’ and “high’’ pH solutions. J. Mater. Sci. 38, 127–132 (2003)

    Article  Google Scholar 

  25. Fremy, M.E.: On the composition of cast iron and steel. J. Franklin Inst. 72(5), 342–346 (1861)

    Article  Google Scholar 

  26. García, T.E., et al.: Effect of hydrogen embrittlement on the tensile properties of CrMoV steels by means of the small punch test. Mater. Sci. Eng., A 664, 165–176 (2016)

    Article  Google Scholar 

  27. García, T.E., et al.: Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloy. Compd. 582, 708–717 (2014)

    Article  Google Scholar 

  28. Gerboni, R., Salvador, E.: Hydrogen transportation systems: elements of risk analysis. Energy 34(12), 2223–2229 (2009)

    Article  Google Scholar 

  29. Goltsov, V.A.: Fundamentals of hydrogen treatment of materials. Prog. Hydrog. Treat. Mater. 3–36 (2001)

    Google Scholar 

  30. Gonzalez, J., Gutierrez-Solana, F., Varona, J.M.: The effects of microstructure, strength level, and crack propagation mode on stress corrosion cracking behavior of 4135 steel. Metall. Mater. Trans. A. 27, 281–290 (1994)

    Article  Google Scholar 

  31. Hadam, U., Zakroczymski, T.: Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques. Int. J. Hydrogen Energy 34(5), 2449–2459 (2009)

    Article  Google Scholar 

  32. Haeseldonckx, D., D’haeseleer W.: The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int. J. Hydrog. Energy 32(10–11), 1381–1386 (2007)

    Google Scholar 

  33. Hardie, D., Charles, E.A., Lopez, A.H.: Hydrogen embrittlement of high strength pipeline steels. Corros. Sci. 48(12), 4378–4385 (2006)

    Article  Google Scholar 

  34. Huang, G., et al.: Mechanical properties of X70 welded joint in high-pressure natural gas/hydrogen mixtures. J. Mater. Eng. Perform. 29, 1589–1599 (2020)

    Article  Google Scholar 

  35. Isaac, T.: HyDeploy: the UK’s first hydrogen blending deployment project. Clean Energy 3(2), 114–125 (2019)

    Article  Google Scholar 

  36. ISO 17081:2014. Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique (2014)

    Google Scholar 

  37. ISO 16573:2015. Steel - measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels. International Organization for Standardization (2015)

    Google Scholar 

  38. ISO 11114-4:2017. Transportable gas cylinders—compatibility of cylinder and valve materials with gas contents part 4: test methods for selecting metallic materials resistant to hydrogen embrittlement. International Organization for Standardization (2017)

    Google Scholar 

  39. Jo, Y.D., Ahn, B.J.: Analysis of hazard area associated with hydrogen gas transmission pipelines. Int. J. Hydrogen Energy 31(14), 2122–2130 (2006)

    Article  Google Scholar 

  40. Johnson, W.H.: II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. R. Soc. Lond. 23(156–163), 168–179 (1875)

    Google Scholar 

  41. Kadhim, M.G., Albdiry, M.: A critical review on corrosion and its prevention in the oilfield equipment. J. Pet. Res. Stud. 14, 162–189 (2017)

    Google Scholar 

  42. Kalachev, B.A.: Hydrogen Embrittlement of Metals. Metallurgy, Moscow (1985).(in Russian)

    Google Scholar 

  43. Kessler, A. et al.: Hydrogen safety barriers and measures. In: HySafe: Biennal Report on Hydrogen Safety (2006)

    Google Scholar 

  44. Kim, W.K., Koh, S.U., Yang, B.Y., Kim, K.Y.: Effect of environment and metallurgical factors on hydrogen induced cracking. Corros. Sci. 50, 3336–3342 (2008)

    Article  Google Scholar 

  45. Kuduzovic, A., Poletti, M., Sommitsch, C., Domankova, M., Mitsche, S., Kienreich, R.: Investigations into the delayed fracture susceptibility of 34crnimo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng., A 590, 66–73 (2014)

    Article  Google Scholar 

  46. Labidine Messaoudani, Z. et al.: Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: a critical review. Int. J. Hydrog. Energy 41(39), 17511–17525 (2016)

    Google Scholar 

  47. Lancsater, J.: Handbook of Structural Welding: Processes, Materials and Methods in the Welding of Major Structures. Pipelines and process plant, Woodhead Publishing, Sawston (2003)

    Google Scholar 

  48. Lee, J.A., et al.: Hydrogen-induced toughness drop in weld coarse-grained heat-affected zones of linepipe steel. Mater. Charact. 82, 17–22 (2013)

    Article  Google Scholar 

  49. Lowesmith, B.J., et al.: Gas build-up in a domestic property following releases of methane/hydrogen mixtures. Int. J. Hydrogen Energy 34(14), 5932–5939 (2009)

    Article  Google Scholar 

  50. Maciejewski, J.: The effects of sulfide inclusions on mechanical properties and failures of steel components. J. Fail. Anal. Prev. 15, 169–178 (2015)

    Article  Google Scholar 

  51. MacIntyre, I., et al.: Canadian hydrogen safety program. Int. J. Hydrogen Energy 32(13), 2134–2143 (2007)

    Article  Google Scholar 

  52. Mao, X., Takahashi, H.: Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J. Nucl. Mater. 150(1), 42–52 (1987)

    Article  Google Scholar 

  53. Martinsson, A., Sandstrom, R.: Hydrogen depth profile in phosphorus-doped, oxygen free copper after cathodic charging. J. Mater. Sci. 47(19), 6768–6776 (2012)

    Article  Google Scholar 

  54. Masouri, D., Zafari, M., Araghi, A.: Sulfide stress cracking of pipeline-case history. In: Proceedings of the NACE International. Corrosion 2008 Proceedings, New Orleans, LA (2008)

    Google Scholar 

  55. Matsuoka, S., Yamabe, J., Matsunaga, H.: Criteria for determining hydrogen compatibility and the mechanisms for hydrogen-assisted, surface crack growth in austenitic stainless steels. Eng. Fract. Mech. 53, 103–127 (2016)

    Article  Google Scholar 

  56. Meng, B., et al.: Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen Energy 42(11), 7404–7412 (2017)

    Article  Google Scholar 

  57. Mhu, M., Du, C., Li, X., Liu, Z., Wang, S., Zhao, T., Jia, J.: Effect of strength and microstructure on stress corrosion cracking behavior and mechanism of X80 pipeline steel in high pH carbonate/bicarbonate solution. J. Mater. Eng. Perform. 23, 1358–1365 (2014)

    Article  Google Scholar 

  58. Midilli, A., Dincer, I.: Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int. J. Hydrogen Energy 33(16), 4209–4222 (2008)

    Article  Google Scholar 

  59. Mohtadi-Bonab, M.A., Szpunar, J.A., Razavi-Tousi, S.S.: A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels. Eng. Fail. Anal. 33, 163–175 (2013)

    Article  Google Scholar 

  60. Mohtadi-Bonab, M.A., Ghesmati-Kucheki, H.: Important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance: review paper. Met. Mater. Int. 25(5), 1109–1134 (2019)

    Article  Google Scholar 

  61. Nanninga, N.E. et al.: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 59(1–9) (2012)

    Google Scholar 

  62. Nelson, G.G.: Hydrogen embrittlement. In: Embrittlement of structural steels and alloys, pp. 256–333, Metallurgy, Moscow (1988) (in Russian)

    Google Scholar 

  63. Nelson, H.G.: Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading. In: Thompson, A.W. (ed.) Effect of Hydrogen on Behavior of Materials, pp. 602–611. Moran, Wyoming, USA (1976)

    Google Scholar 

  64. Nguyen, T.T., et al.: Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel. Int. J. Hydrogen Energy 45(3), 2368–2381 (2020)

    Article  Google Scholar 

  65. Nguyen, T.T., et al.: Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests. Mater. Sci. Eng., A 781, 139114 (2020)

    Google Scholar 

  66. Nguyen, T.T., et al.: Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment. Int. J. Hydrogen Energy 45(43), 23739–23753 (2020)

    Article  Google Scholar 

  67. Omura, T., Nakamura, J., Hirata, H., Jotoku, K., Ueyama, M., Osuki, T., Terunuma, M.: Effect of surface hydrogen concentration on hydrogen embrittlement properties of stainless steels and NI based alloys. ISIJ Int. 56(3), 405–412 (2016)

    Article  Google Scholar 

  68. Öney, F., et al.: Evaluation of pipeline transportation of hydrogen and natural gas mixtures. Int. J. Hydrogen Energy 19(10), 813–822 (1994)

    Article  Google Scholar 

  69. Park, G.T., et al.: Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 50(7), 1865–1871 (2008)

    Article  Google Scholar 

  70. Polyanskiy, V.A., et al.: Phenomenon of skin effect in metals due to hydrogen absorption. Contin. Mech. Thermodyn. 31(6), 1961–1975 (2019)

    Article  MathSciNet  Google Scholar 

  71. Roffey, P., Davies, E.H.: The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline. Eng. Fail. Anal. 44, 148–157 (2014)

    Article  Google Scholar 

  72. Rusin, A., Stolecka, K.: Reducing the risk level for pipelines transporting carbon dioxide and hydrogen by means of optimal safety valves spacing. J. Loss Prev. Process Ind. 33, 77–87 (2015)

    Article  Google Scholar 

  73. San Marchi, C., Somerday, B.P., Nibur, K.A.: Development of methods for evaluating hydrogen compatibility and suitability. Int. J. Hydrogen Energy 39(35), 20434–20439 (2014)

    Article  Google Scholar 

  74. San Marchi, C. et al.: Fracture resistance and fatigue crack growth of X80 pipeline steel in gaseous hydrogen. Press. Vessel. Pip. Conf. 44564, 841–849 (2011)

    Google Scholar 

  75. Shang, J., et al.: Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures. Int. J. Hydrogen Energy 45(52), 28204–28215 (2020)

    Article  Google Scholar 

  76. Shang, J., et al.: Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures. Scripta Mater. 189, 67–71 (2020)

    Article  Google Scholar 

  77. Shi, X.B.,Yan, W., Wang, W., Zhao, L.Y., Shan, YY., Yang, K.: Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel. Ournal Iron Steel Res. Int. 22, 937–942 (2015)

    Google Scholar 

  78. Smit, R., Weeda, M., De Groot, A.: Hydrogen infrastructure development in The Netherlands. Int. J. Hydrogen Energy 32(10–11), 1387–1395 (2007)

    Article  Google Scholar 

  79. Sutcliffe, J.M., Fessler, R.R., Boyd, W.K., Parkins, R.N.: Stress corrosion cracking of carbon steel in carbonate solutions. Corrosion 28, 313–320 (1972)

    Article  Google Scholar 

  80. Swain, M.R., Swain, M.N.: A comparison of H2, CH4 and C3H8 fuel leakage in residential settings. Int. J. Hydrogen Energy 17(10), 807–815 (1992)

    Article  Google Scholar 

  81. Takaki, S., et al.: Determination of hydrogen compatibility for solution-treated austenitic stainless steels based on a newly proposed nickel-equivalent equation. Int. J. Hydrogen Energy 41(33), 15095–15100 (2016)

    Article  Google Scholar 

  82. TM0284, NACE Standard. Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International, Houston, TX (2011)

    Google Scholar 

  83. Trasatti, S.P., Sivieri, E., Mazza, F.: Susceptibility of a X80 steel to hydrogen embrittlement. Mater. Corros. 56(2), 111–117 (2005)

    Article  Google Scholar 

  84. Tzimas, E., Castello, P., Peteves, S.: The evolution of size and cost of a hydrogen delivery infrastructure in Europe in the medium and long term. Int. J. Hydrogen Energy 32(10–11), 1369–1380 (2007)

    Article  Google Scholar 

  85. Williams, D.P., Nelson, H.G.: Embrittlement of 4130 steel by low-pressure gaseous hydrogen. Metall. Trans. 1(1), 63–68 (1970)

    Article  Google Scholar 

  86. Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A.: Charging, degassing and distribution of hydrogen in cast iron. Swerea KIMAB (2015)

    Google Scholar 

  87. Wu, T.I., Wu, J.C.: Effects of cathodic charging and subsequent solution treating parameters on the hydrogen redistribution and surface hardening of Ti-6Al-4V alloy. J. Alloy. Compd. 466(1), 153–159 (2008)

    Article  Google Scholar 

  88. Yagodzinskyy, Y., Todoshchenko, O., Papula, S., Hanninen, H.: Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res. Int. 82(1), 20–25 (2011)

    Article  Google Scholar 

  89. Yamabe, J., Awane, T., Matsuoka, S.: Elucidating the hydrogen-entry-obstruction mechanism of a newly developed aluminum-based coating in high-pressure gaseous hydrogen. Int. J. Hydrogen Energy 40(32), 10329–10339 (2015)

    Article  Google Scholar 

  90. Zhao, W., et al.: Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment. Corros. Sci. 111, 84–97 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Support of this work by a grant No. 18-19-00160 from the Russian Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Polyanskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polyanskiy, V.A., Frolova, K.P., Sedova, Y.S., Yakovlev, Y.A., Belyaev, A.K. (2022). Behavior of Pipeline Steels in Gaseous Hydrogen-Containing Mixtures. In: Polyanskiy, V.A., K. Belyaev, A. (eds) Mechanics and Control of Solids and Structures. Advanced Structured Materials, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-93076-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93076-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93075-2

  • Online ISBN: 978-3-030-93076-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics