Skip to main content

Global Stability Boundaries and Hidden Oscillations in Dynamical Models with Dry Friction

  • Chapter
  • First Online:
Mechanics and Control of Solids and Structures

Abstract

In this chapter, the issues of global stability, bifurcations, and emergence of nontrivial limiting dynamic regimes in systems described by differential equations with discontinuous right-hand sides are considered within the framework of the theory of hidden oscillations. Such systems are important in the problems of mechanics, engineering, and control, and arise both a priori and as a result of idealization of some characteristics included in real physical systems. Determining the boundaries of global stability, scenarios of its violation, as well as identifying all arising limiting oscillations are the key challenges in the design of real systems based on mathematical modeling. While the self-excitation of oscillations can be effectively investigated numerically, the identification of hidden oscillations requires special analytical and numerical methods. The analysis of hidden oscillations is necessary to determine the exact boundaries of global stability, to estimate the gap between the necessary and sufficient conditions of global stability, and their convergence. This work presents a number of theoretical results and engineering problems in which hidden oscillations (their absence or presence and location) play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term “global stability” for simplicity of further presentation, while in the literature there are used different terms like “globally asymptotically stable” [35, p. 137], [36, p. 144], “gradient-like” [13, p. 56], [37, p. 2], “quasi-gradient-like” [13, p. 56], [37, p. 2], and others, reflecting the features of the stationary set and the convergence of trajectories to it.

  2. 2.

    In some cases, the use of HBM makes it possible to accurately identify all periodic orbits in a system. For example, for a system described by the equation \(\ddot{x} + x - b\dot{x}\cos (x) = 0\) (see, e.g., [64, 65]), this method predicts an infinite number of periodic orbits in the form \(x^\mathrm{hbm}(t) \!=\! a^i_0 \sin (t)\), where \(\{a^i_0\}_{i=1}^\infty \) are zeros of the Bessel function: \(J_1(a^i_0) \!=\! \tfrac{1}{\pi }\int _0^\pi \cos (\tau \!-\! a^i_0 \sin \tau ) d\tau \!=\! 0\).

  3. 3.

    Without limiting the generality of the foregoing, suppose that \(\det A \ne 0\).

  4. 4.

    Further research in this field led to the onset of several conjectures on global stability of various classes of nonlinear systems (see, e.g., [75]).

References

  1. Coulomb, C.A.: Thèorie des machines simples. Mèm. Math. et Phys. l’Acad. Sci. 10, 161–331 (1785)

    Google Scholar 

  2. Hartog, J.D.: Forced vibrations with combined viscous and Coulomb damping. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 9(59), 801 (1930)

    Article  MATH  Google Scholar 

  3. Andronov, A., Bautin, N.: Dvizhenie nejtral’nogo samoleta, snabzhennogo avtopilotom, i teoriya tochechnyh preobrazovanij poverhnostej (Motion of a neutral aeroplane supplied with an automatic pilot and the theory of pointwise transformations of surfaces). Dokl. Akad. Nauk SSSR 43(5), 197 (1944)

    Google Scholar 

  4. Keldysh, M.: O dempferakh s nelinejnoj kharakteristikoj (On dampers with a nonlinear characteristic). TsAGI Tr. 557, 26 (1944)

    Google Scholar 

  5. Bennett, S.: A history of control engineering 1930–1955. IET (1993)

    Google Scholar 

  6. Emelyanov, S.: Sistemy avtomaticheskogo upravleniya s peremennoj strukturoj (Automatic control systems with variable structure). Nauka (1967)

    Google Scholar 

  7. Poznyak, A., Yu, W., Sanchez, E., Perez, J.: Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Networks 10(6), 1402–1411 (1999)

    Article  Google Scholar 

  8. Utkin, V., Poznyak, A.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Best, R.E., Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Tutorial on dynamic analysis of the Costas loop. IFAC Annu. Rev. Control 42, 27–49 (2016)

    Article  Google Scholar 

  10. Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: A short survey on nonlinear models of QPSK Costas loop. IFAC-PapersOnLine 50(1), 6525–6533 (2017)

    Article  Google Scholar 

  11. Filippov, A.: Differencial’nye uravneniya s razryvnoj pravoj chast’yu (Differential equations with discontinuous right-hand side). Mat. Sb. (N.S.) 51(1), 99–128 (1960)

    Google Scholar 

  12. Ważewski, T.: Sur une condition équivalente à l’équation au contingent. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9, 865–867 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Gelig, A.K., Leonov, G.A., Yakubovich, V.A.: Ustojchivost’ nelinejnyh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium). Nauka (1978) [English transl: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific (2004)]

    Google Scholar 

  14. Aizerman, M.A., Pyatnitskii, E.S.: Foundations of a theory of discontinuous systems. I, Autom. Remote Control 35 1066–1079 (1974)

    Google Scholar 

  15. Piiroinen, P.T., Kuznetsov, Yu.A.: An event-driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. (TOMS) 34(3), 13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kiseleva, M., Kuznetsov, N.: Coinsidence of Gelig-Leonov-Yakubovich, Filippov, and Aizerman-Pyatnitskii definitions. Vestn. St. Petersburg Univ. Math. 48(2), 66–71 (2015)

    Article  MATH  Google Scholar 

  17. Cortes, J.: Discontinuous dynamical systems. IEEE Control Syst. 28(3), 36–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V., Yuldashev, R.V., Kudryashova, E.V., Kuznetsova, O.A., Rosenwasser, E.N., Abramovich, S.M.: The birth of the global stability theory and the theory of hidden oscillations. In: 2020 European Control Conference (ECC), pp. 769–774 (2020)

    Google Scholar 

  19. Andronov, A.A., Vitt, E.A., Khaikin, S.E.: Teoriya kolebanij (Theory of Oscillators). ONTI NKTP SSSR (1937). [English transl.: Pergamon Press (1966)]

    Google Scholar 

  20. Andronov, A.A., Maier, A.G.: Zadacha Mizesa v teorii pryamogo regulirovaniya i teoriya tochechnyh preobrazovanij poverhnostej (The Mizes problem in the theory of direct control and the theory of point transformations of surfaces). Dokl. Akad. Nauk SSSR 43(2), 58–60 (1944)

    Google Scholar 

  21. Andronov, A.A., Maier, A.G.: Zadacha Vyshnegradskogo v teorii pryamogo regulirovaniya. I (The problem of Vyshnegradsky in the theory of direct regulation). Avtomat. Telemekh. 8(5), 314–335 (1947)

    Google Scholar 

  22. Andronov, A.A., Maier, A.G.: Zadacha Vyshnegradskogo v teorii pryamogo regulirovaniya. I (The problem of Vyshnegradsky in the theory of direct regulation). Avtomat. Telemekh. 15(5), 505–530 (1953)

    Google Scholar 

  23. Barbashin, E.A., Krasovsky, N.N.: Ob ustojchivosti dvizheniya v celom (On the stability of a motion in the large). Dokl. Akad. Nauk SSSR 86(3), 453–456 (1952)

    Google Scholar 

  24. Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Mokaev, R.N.: Global problems for differential inclusions. Kalman and Vyshnegradskii problems and Chua circuits. Differ. Equ. 53, 1671–1702 (2017)

    Google Scholar 

  25. Polyakov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Franklin Inst. 351(4), 1831–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Polyakov, A.: Discontinuous Lyapunov functions for nonasymptotic stability analysis. IFAC Proc. Vol. 47(3), 5455–5460 (2014)

    Article  Google Scholar 

  27. Popov, V.M.: Criterii de stabilitate pentru sistemele neliniare de reglare automata, bazate pe utilizarea transformatei Laplace. Studii Cercet. Energ. (in Romanian) 9(1), 119–135 (1959)

    Google Scholar 

  28. Popov, V.M.: Criterion of quality for non-linear controlled systems. IFAC Proc. Vol. 1(1), 183–187 (1960)

    Article  Google Scholar 

  29. Popov, V.M.: Absolute stability of nonlinear systems of automatic control. Autom. Remote Control 22(8), 857–875 (1961)

    MathSciNet  MATH  Google Scholar 

  30. Yakubovich, V.A.: Reshenie nekotoryh matrichnyh neravenstv, vstrechayushchihsya v teorii avtomaticheskogo regulirovaniya (The solution of certain matrix inequalities in automatic control theory). Dokl. Akad. Nauk SSSR 143(6), 1304–1307 (1962) [English transl: Soviet Math. Dokl. (1962)]

    Google Scholar 

  31. Kalman, R.E.: Lyapunov functions for the problem of Lur’e in automatic control. Proc. Natl. Acad. Sci. U.S.A. 49(2), 201 (1963)

    Article  MATH  Google Scholar 

  32. Barabanov, N.E., Gelig, AKh., Leonov, G.A., Likhtarnikov, A.L., Matveev, A.S., Smirnova, V.B., Fradkov, A.L.: The frequency theorem (the Yakubovich-Kalman lemma) in control theory. Autom. Remote Control 10(9), 3–40 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Leonov, G.A.: Concerning stability of nonlinear controlled systems with non-single equilibrium state. Autom. Remote Control 32(10), 1547–1552 (1971)

    MATH  Google Scholar 

  34. Gelig, A.Kh.: Investigations of stability of nonlinear discontinuous automatic control systems with a nonunique equilibrium state (transl.). Automat. Remote Control 25, 141–148 (1964)

    Google Scholar 

  35. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice-Hall (1978)

    Google Scholar 

  36. Haddad, W.M., Chellaboina, V.S.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press (2011)

    Google Scholar 

  37. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Nonlocal Methods for Pendulum-like Feedback Systems. Teubner Verlagsgesselschaft, Stuttgart-Leipzig (1992)

    Book  MATH  Google Scholar 

  38. Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov, G.A.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50(4), 511–543 (2011)

    Google Scholar 

  39. Kuznetsov, N.: Theory of hidden oscillations and stability of control systems. J. Comput. Syst. Sci. Int. 59(5), 647–668 (2020)

    Article  MATH  Google Scholar 

  40. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos Appl. Sci. Eng. 23(1), 1330002 (2013)

    Google Scholar 

  41. Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors (survey lecture, 19th IFAC World Congress). IFAC Proc. Vol. 47, 5445–5454 (2014)

    Article  Google Scholar 

  42. Bautin, N.N.: Povedenie dinamicheskih sistem vblizi granic ustojchivosti (The Behaviour of Dynamical Systems close to the Boundaries of a Stability Domain). Gostekhizdat, Leningrad, Moscow (1949)

    Google Scholar 

  43. Kuznetsov, N.V.: Plenary lecture “Theory of hidden oscillations”. In: 5th IFAC Conference on Analysis and Control of Chaotic Systems (2018)

    Google Scholar 

  44. Kuznetsov, N.V.: Plenary lecture “Theory of hidden oscillations”. In: 11th Russian Multiconference on Control Problems. Proceedings, pp. 41–54 (2018)

    Google Scholar 

  45. Kuznetsov, N.V.: Teoriya skrytyh kolebanij (Theory of hidden oscillations). In: XIII All-Russian Meeting on Control Problems. Proceedings, pp. 103–107 (2019)

    Google Scholar 

  46. Kuznetsov, N.V.: Plenary lecture “Theory of hidden oscillations and stability of control systems”. In: International Conference “Stability, Control, Differential Games” Devoted to the 95th Anniversary of Academician N.N. Krasovsky (Yekaterinburg), pp. 201–204 (2019)

    Google Scholar 

  47. Kuznetsov, N.V.: Invited lecture “Theory of hidden oscillations and stability of control systems”. In: XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics (UFA, Russia) (2019). https://www.youtube.com/watch?v=843m-rI5nTM

  48. Kuznetsov, N., Mokaev, T., Kuznetsova, O., Kudryashova, E.: The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dyn. 102, 713–732 (2020)

    Article  Google Scholar 

  49. Kapranov, M.: Locking band for phase-locked loop. Radiofizika 11(12), 37–52 (1956)

    Google Scholar 

  50. Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun. Nonlin. Sci. Numer. Simulat. 51, 39–49 (2017)

    Article  MATH  Google Scholar 

  51. Kuznetsov, N. et al.: Comments on van Paemel’s mathematical model of charge-pump phase-locked loop. Differencialnie Uravnenia i Protsesy Upravlenia 1, 109–120 (2019). https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdf

  52. Kuznetsov, N., Matveev, A., Yuldashev, M., Yuldashev, R., Bianchi, G.: Stability of charge-pump phase-locked loops: the hold-in and pull-in ranges. IFAC-PapersOnLine, 53(2), 2022–2026 (2020). IFAC World Congress

    Google Scholar 

  53. Gubar’, N.A.: Issledovanie odnoj kusochno-linejnoj dinamicheskoj sistemy s tremya parametrami (Investigation of a piecewise linear dynamical system with three parameters). Prikl. Mat. i Mekh. 25(6), 1011–1023 (1961)

    MathSciNet  Google Scholar 

  54. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920)

    Google Scholar 

  55. Krylov, N.M., Bogolyubov, N.N.: Vvedenie v nelinejnuyu mekhaniku (Introduction to non-linear mechanics. AN USSR, Kiev (1937) [English transl: Princeton University Press (1947)]

    Google Scholar 

  56. Goldfarb, L.S.: O nekotoryh nelinejnostyah v sistemah regulirovaniya (Certain nonlinearities in control systems). Autom. Telemekh. 8(5), 349–383 (1947)

    Google Scholar 

  57. Khalil, H.K.: Nonlinear Systems. Prentice Hall, N.J (2002)

    MATH  Google Scholar 

  58. Tsypkin, Y.Z.: Teoriya relejnyh sistem avtomaticheskogo upravleniya. In: Theory of Relay Control Systems. Moscow, Gostekhizdat (1955)

    Google Scholar 

  59. Boiko, I.: Discontinuous control systems: frequency-domain analysis and design. Springer Science & Business Media (2008)

    Google Scholar 

  60. Akimova, E.D., Boiko, I.M., Kuznetsov, N.V., Mokaev, R.N.: Analysis of oscillations in discontinuous Lurie systems via LPRS method. Vibroengineering PROCEDIA 25, 177–181 (2019)

    Article  Google Scholar 

  61. Lurie, A.I., Postnikov, V.N.: K teorii ustojchivosti reguliruemyh sistem (To the stability theory of controlled systems). Prikl. Mat. Mekh. 8(3), 246–248 (1944)

    Google Scholar 

  62. Lurie, A.I.: Nekotorye nelinejnye zadachi teorii avtomaticheskogo regulirovaniya (Some Nonlinear Problems in the Theory of Automatic Control), Gostekhizdat (1951) [English transl: H.M. Stationery Office, London (1957)]

    Google Scholar 

  63. Boiko, I.M., Kuznetsov, N.V., Mokaev, R.N., Akimova, E.D.: On asymmetric periodic solutions in relay feedback systems. J. Franklin Inst. 358(1), 363–383 (2021)

    Google Scholar 

  64. Kahn, P.B., Zarmi, Y.: Nonlinear Dynamics. Exploration through normal forms, Wiley, New York (1998)

    MATH  Google Scholar 

  65. Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 226(9), 1979–1985 (2017)

    Article  Google Scholar 

  66. Vyshnegradsky, I.A.: O regulyatorah pryamogo dejstviya (On regulators of direct action). Izv. St. Petersburg Technol. Inst. 1 (1877)

    Google Scholar 

  67. Poincare, H.: Les methodes nouvelles de la mecanique celeste. Gauthiers-Villars, Paris 13 (1892, 1893, 1899). [English transl. edited by D. Goroff: American Institute of Physics, NY (1993)]

    Google Scholar 

  68. Léauté, M.H.: Mémoire sur les oscillations à longue période dans les machines actionnées par des moteurs hydrauliques et sur les moyens de prévenir ces oscillations. J. de l’êcole Polytech. 55, 1–126 (1885)

    MATH  Google Scholar 

  69. Zhukovsky, N.Y.: Teoriya regulirovaniya hoda mashin (Theory of regulation of the course of machines). Tipo-litgr. T-va I. N. Kushnerev and Co. (1909)

    Google Scholar 

  70. Kalman, R.E.: Physical and mathematical mechanisms of instability in nonlinear automatic control systems. Trans. ASME 79(3), 553–566 (1957)

    MathSciNet  Google Scholar 

  71. Leonov, G., Ponomarenko, D., Smirnova, V.: Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications, World Scientific, Singapore (1996)

    MATH  Google Scholar 

  72. Erugin, N.P.: Ob odnoj zadache teorii ustojchivosti sistem avtomaticheskogo regulirovaniya (A problem in the theory of stability of automatic control systems). Prikl. Mat. Mekh. 5, 620–628 (1952)

    Google Scholar 

  73. Malkin, I.G.: Ob ustojchivosti sistem avtomaticheskogo regulirovaniya (On the stability of automatic control systems). Prikl. Mat. Mekh. 16(4), 495–499 (1952)

    Google Scholar 

  74. Krasovsky, N.N.: Teoremy ob ustojchivosti dvizhenij, opredelyaemyh sistemoj dvuh uravnenij (Theorems on the stability of motions determined by a system of two equations). Prikl. Mat. Mekh. 16(5), 547–554 (1952)

    Google Scholar 

  75. Kuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V., Yuldashev, R.V.: The Egan problem on the pull-in range of type 2 PLLs. IEEE Trans. Circuits Syst. II Express Briefs 68(4), 1467–1471 (2021)

    Article  Google Scholar 

  76. Leonov, G.A., Kuznetsov, N.V., Andrievsky, B.R., Yuldashev, M.V., Yuldashev, R.V.: Mathematical modeling of transients of the hydraulic unit of the Sayano-Shushenskaya HPP. Differencialnie Uravnenia i Protsesy Upravlenia (Differential Equations and Control Processes) 4, 80–106 (2018)

    Google Scholar 

  77. Leonov, G.A., Kuznetsov, N.V., Solovyeva, E.P.: Mathematical modeling of vibrations in turbogenerator sets of Sayano-Shushenskaya hydroelectric power station. Dokl. Phys. 61(2), 55–60 (2016)

    Article  Google Scholar 

  78. Kuznetsov, N.V., Yuldashev, M.V. Yuldashev, R.V.: Analytical-numerical analysis of closed-form dynamic model of Sayano-Shushenskaya hydropower plant: stability, oscillations, and accident. Commun. Nonlinear Sci. Numer. Simul. 93, 105530 (2021)

    Google Scholar 

  79. Leonov, G.A., Kuznetsov, N.V.: On flutter suppression in the Keldysh model. Dokl. Phys. 63(9), 366–370 (2018)

    Article  Google Scholar 

  80. Kudryashova, E.V., Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., Mokaev, R.N.: Harmonic balance method and stability of discontinuous systems. In: Matveenko, V.P., et al. (eds.) Dynamics and Control of Advanced Structures and Machines, pp. 99–107. Springer Nature, Switzerland (2019)

    Google Scholar 

  81. Kuznetsov, N.V., Kuznetsova, O.A., Koznov, D.V., Mokaev, R.N., Andrievsky, B.R.: Counterexamples to the Kalman conjectures. IFAC-PapersOnLine 51(33), 138–143 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Leading Scientific Schools of Russia Project NSh-2624.2020.1, NSh-4196.2022.1.1, St.Petersburg State University grant Pure ID 75207094 (section 1), and Team Finland Knowledge Programme (163/83/2021)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N.V. et al. (2022). Global Stability Boundaries and Hidden Oscillations in Dynamical Models with Dry Friction. In: Polyanskiy, V.A., K. Belyaev, A. (eds) Mechanics and Control of Solids and Structures. Advanced Structured Materials, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-93076-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93076-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93075-2

  • Online ISBN: 978-3-030-93076-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics