Skip to main content

Robust Anomaly Detection from Partially Observed Anomalies with Augmented Classes

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13070))

Included in the following conference series:

Abstract

Anomaly detection is becoming increasingly ubiquitous in the society of data mining. Prominent anomaly detection works have achieved great success in theory and practice. However, they cannot handle the generalized semi-supervised scenario where there are only a handful of labeled anomalies, and plentiful unlabeled data that may bring in some instances of augmented anomaly classes but which are hard to be sampled. To solve this new problem, we propose a method called ACAD (Augmented Classes Anomaly Detection), which consists of three components. ACAD firstly suggests an augmented anomaly class discovery module that connects the isolation score and the similarity score to excavate the instances of hidden anomaly classes from unlabeled data accurately. ACAD then uses a specific cluster approach to compute useful similarity scores to separate reliable anomalous and normal instances among unlabeled data, respectively. ACAD finally builds a robust anomaly detector based on mined examples, successfully performing anomaly detection from partially observed anomalies with augmented classes. A series of empirical studies show that our algorithm remarkably outperforms state of the art on almost twenty datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016)

    Article  Google Scholar 

  2. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109(4), 719–760 (2020). https://doi.org/10.1007/s10994-020-05877-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  5. Chang, S., Du, B., Zhang, L.: BASO: a background-anomaly component projection and separation optimized filter for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 56(7), 3747–3761 (2018)

    Article  Google Scholar 

  6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised Learning (2006). IEEE Transactions on Neural Networks 20(3), 542–542 (2009)

    Google Scholar 

  7. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch. In: AAAI, pp. 3569–3576 (2020)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: CONAN: complementary pattern augmentation for rare disease detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 614–621 (2020)

    Google Scholar 

  10. Da, Q., Yu, Y., Zhou, Z.H.: Learning with augmented class by exploiting unlabeled data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  11. Edgeworth, F.Y.: XLI. On discordant observations. London Edinburgh Dublin Philos. Mag. J. Sci. 23(143), 364–375 (1887)

    Article  Google Scholar 

  12. Ehrhardt, S., Zisserman, A., Rebuffi, S., Han, K., Vedaldi, A.: Automatically discovering and learning new visual categories with ranking statistics. In: Proceedings of the 8th International Conference on Learning Representations, ICLR 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  13. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)

    Article  MathSciNet  Google Scholar 

  14. Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8401–8409 (2019)

    Google Scholar 

  15. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  16. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. arXiv preprint arXiv:1711.10125 (2017)

  17. Keller, F., Muller, E., Bohm, K.: HiCS: high contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048. IEEE (2012)

    Google Scholar 

  18. Lee, W.S., Liu, B.: Learning with positive and unlabeled examples using weighted logistic regression. In: ICML, vol. 3, pp. 448–455 (2003)

    Google Scholar 

  19. Leon, E., Nasraoui, O., Gomez, J.: Anomaly detection based on unsupervised niche clustering with application to network intrusion detection. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 502–508. IEEE (2004)

    Google Scholar 

  20. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive and unlabeled examples. In: Third IEEE International Conference on Data Mining, pp. 179–186. IEEE (2003)

    Google Scholar 

  21. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text documents. In: ICML, vol. 2, pp. 387–394 (2002)

    Google Scholar 

  22. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  23. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet, pp. 13–14 (2007)

    Google Scholar 

  24. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. Adv. Neural. Inf. Process. Syst. 31, 3235–3246 (2018)

    Google Scholar 

  25. Rayana, S.: ODDS library (2016)

    Google Scholar 

  26. Ruts, I., Rousseeuw, P.J.: Computing depth contours of bivariate point clouds. Comput. Stat. Data Anal. 23(1), 153–168 (1996)

    Article  Google Scholar 

  27. Sabahi, F., Movaghar, A.: Intrusion detection: a survey. In: 2008 Third International Conference on Systems and Networks Communications, pp. 23–26. IEEE (2008)

    Google Scholar 

  28. Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detection. In: BMVC, vol. 1, pp. 035–1 (2008)

    Google Scholar 

  29. Tang, H., Cao, Z.: Machine learning-based intrusion detection algorithms. J. Comput. Inf. Syst. 5(6), 1825–1831 (2009)

    Google Scholar 

  30. Wu, S.Y., Yen, E.: Data mining-based intrusion detectors. Expert Syst. Appl. 36(3), 5605–5612 (2009)

    Article  Google Scholar 

  31. Zhang, J., et al.: Viral pneumonia screening on chest X-ray images using confidence-aware anomaly detection (2020)

    Google Scholar 

  32. Zhang, Y.L., et al.: POSTER: a PU learning based system for potential malicious URL detection. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2599–2601 (2017)

    Google Scholar 

  33. Zhang, Y.L., Li, L., Zhou, J., Li, X., Zhou, Z.H.: Anomaly detection with partially observed anomalies. In: Companion Proceedings of the Web Conference 2018, pp. 639–646 (2018)

    Google Scholar 

  34. Zhang, Y., Nie, X., He, R., Chen, M., Yin, Y.: Normality learning in multispace for video anomaly detection. IEEE Trans. Circuits Syst. Video Technol. 31, 3694–3706 (2020)

    Article  Google Scholar 

  35. Zhu, X.J.: Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2005)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61876098), the National Key R&D Program of China (2018YFC0830100, 2018-YFC0830102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, R., Han, Z., Zhang, Y., He, X., Nie, X., Yin, Y. (2021). Robust Anomaly Detection from Partially Observed Anomalies with Augmented Classes. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13070. Springer, Cham. https://doi.org/10.1007/978-3-030-93049-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93049-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93048-6

  • Online ISBN: 978-3-030-93049-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics