Skip to main content

Introduction to Genome Editing in Induced Pluripotent Stem Cells, Gametes, and Embryos

  • Chapter
  • First Online:
Regulation of Genome Editing in Human iPS Cells

Abstract

This chapter discusses recent findings and technological advances in stem cell biology, in gametogenesis, in genetic engineering and in the potential treatment of hereditary diseases by means of gene and cell therapy-approaches. Important scientific mile stones for human germline interventions include the understanding of reprogramming approaches that drive terminally differentiated somatic cells into pluripotent stem cells, exhibiting all major characteristics of embryonic stem cells. Furthermore, recent advances in the derivation and differentiation of pluripotent stem cells paved the way for a clinical application of such derivatives and ask for the possibility to generate either female and/or male gametes from such cells for reproductive purposes. Also, recent advances in genetic engineering, such as the CRISPR/Cas technology, fuelled the discussion about safety and efficacy of germ-line interventions in the foreseeable future. Finally, two scenarios are discussed to challenge the current normative view on targeted genome interventions during in vitro fertilization applications for couples suffering from hereditary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gurdon (1962).

  2. 2.

    Wilmut et al. (1997).

  3. 3.

    Tachibana et al. (2013); Johannesson et al. (2014).

  4. 4.

    Takahashi and Yamanaka (2006).

  5. 5.

    Okita et al. (2007).

  6. 6.

    Eakin et al. (2005).

  7. 7.

    Kang et al. (2009); Zhao et al. (2009).

  8. 8.

    Stadtfeld et al. (2010).

  9. 9.

    Carey et al. (2011).

  10. 10.

    Wu et al. (2011).

  11. 11.

    Blau and Daley (2019).

  12. 12.

    Blau and Daley (2019).

  13. 13.

    Jinek et al. (2012).

  14. 14.

    Stadtmauer et al. (2020).

  15. 15.

    Zhu et al. (2020).

  16. 16.

    Saitou and Miyauchi (2016).

  17. 17.

    Nayernia et al. (2006).

  18. 18.

    Nayernia et al. (2009).

  19. 19.

    Mulder et al. (2016).

  20. 20.

    Advena-Regnery et al. (2018).

  21. 21.

    Cornu et al. (2017).

  22. 22.

    Mulder et al. (2016).

  23. 23.

    Griesenbach et al. (2015); Prakash et al. (2016).

  24. 24.

    Cutting (2015).

  25. 25.

    AAVS1: adeno-associated virus integration site 1 locus in the first intron of PPP1R12C gene; The AAVS1-locus is a well-established safe-harbour genomic region that allows the expression of delivered DNA sequences without relevant adverse effects for the host organism.

  26. 26.

    Sadelain et al. (2011).

  27. 27.

    Cre recombinase: Cre Recombinase is a Type I topoisomerase from bacteriophage P1 that catalyzes the site-specific recombination of DNA between loxP sites.

  28. 28.

    Abremski and Hoess (1984).

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259(3):1509–1514

    Article  Google Scholar 

  • Advena-Regnery B, Dederer HG, Enghofer F, Cantz T, Heinemann T (2018) Framing the ethical and legal issues of human artificial gametes in research, therapy, and assisted reproduction: a German perspective. Bioethics 32(5):314–326. https://doi.org/10.1111/bioe.12433

    Article  Google Scholar 

  • Blau HM, Daley GQ (2019) Stem cells in the treatment of disease. N Engl J Med 380(18):1748–1760. https://doi.org/10.1056/NEJMra1716145

    Article  Google Scholar 

  • Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, Ganz K, Steine EJ, Cassady JP, Creyghton MP, Welstead GG, Gao Q, Jaenisch R (2011) Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9(6):588–598. https://doi.org/10.1016/j.stem.2011.11.003

    Article  Google Scholar 

  • Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423. https://doi.org/10.1038/nm.4313

    Article  Google Scholar 

  • Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56. https://doi.org/10.1038/nrg3849

    Article  Google Scholar 

  • Eakin GS, Hadjantonakis AK, Papaioannou VE, Behringer RR (2005) Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev Biol 288(1):150–159. https://doi.org/10.1016/j.ydbio.2005.09.028

    Article  Google Scholar 

  • Griesenbach U, Pytel KM, Alton EW (2015) Cystic Fibrosis Gene Therapy in the UK and Elsewhere. Hum Gene Ther 26(5):266–275. https://doi.org/10.1089/hum.2015.027

    Article  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  Google Scholar 

  • Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, Li Z, LeDuc C, Shen Y, Stern S, Xu N, Ma H, Kang E, Mitalipov S, Sauer MV, Zhang K, Benvenisty N, Egli D (2014) Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 15(5):634–642. https://doi.org/10.1016/j.stem.2014.10.002

    Article  Google Scholar 

  • Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5(2):135–138

    Article  Google Scholar 

  • Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AM (2016) Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 22(5):561–573. https://doi.org/10.1093/humupd/dmw017

    Article  Google Scholar 

  • Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann IE, Elliott DJ, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W (2006) In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 11(1):125–132. https://doi.org/10.1016/j.devcel.2006.05.010

    Article  Google Scholar 

  • Nayernia K, Lee JH, Lako M, Armstrong L, Herbert M, Li M, Engel W, Elliott D, Stojkovic M, Parrington J, Murdoch A, Strachan T, Zhang X (2009) Retraction - in vitro derivation of human sperm from embryonic stem cells. Stem Cells Dev. https://doi.org/10.1089/scd.2009.0063

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  Google Scholar 

  • Prakash V, Moore M, Yanez-Munoz RJ (2016) Current progress in therapeutic gene editing for monogenic diseases. Mol Ther 24(3):465–474. https://doi.org/10.1038/mt.2016.5

    Article  Google Scholar 

  • Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58. https://doi.org/10.1038/nrc3179

    Article  Google Scholar 

  • Saitou M, Miyauchi H (2016) Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 18(6):721–735. https://doi.org/10.1016/j.stem.2016.05.001

    Article  Google Scholar 

  • Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465(7295):175–181. https://doi.org/10.1038/nature09017

    Article  Google Scholar 

  • Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH (2020) CRISPR-engineered T cells in patients with refractory cancer. Science 367(6481). https://doi.org/10.1126/science.aba7365

  • Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238. https://doi.org/10.1016/j.cell.2013.05.006

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. https://doi.org/10.1038/385810a0

    Article  Google Scholar 

  • Wu G, Liu N, Rittelmeyer I, Sharma AD, Sgodda M, Zaehres H, Bleidissel M, Greber B, Gentile L, Han DW, Rudolph C, Steinemamm D, Schambach A, Ott M, Schöler HR, Cantz T (2011) Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol 9(7):e1001099

    Article  Google Scholar 

  • Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461(7260):86–90

    Article  Google Scholar 

  • Zhu H, Blum RH, Bjordahl R, Gaidarova S, Rogers P, Lee TT, Abujarour R, Bonello GB, Wu J, Tsai PF, Miller JS, Walcheck B, Valamehr B, Kaufman DS (2020) Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 135(6):399–410. https://doi.org/10.1182/blood.2019000621

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Cantz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantz, T. (2022). Introduction to Genome Editing in Induced Pluripotent Stem Cells, Gametes, and Embryos. In: Dederer, HG., Frenken, G. (eds) Regulation of Genome Editing in Human iPS Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-93023-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93023-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93022-6

  • Online ISBN: 978-3-030-93023-3

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics