Skip to main content

Upward Planar Drawings with Three and More Slopes

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2021)

Abstract

We study upward planar straight-line drawings that use only a constant number of slopes. In particular, we are interested in whether a given directed graph with maximum in- and outdegree at most k admits such a drawing with k slopes. We show that this is in general NP-hard to decide for outerplanar graphs (\(k = 3\)) and planar graphs (\(k \ge 3\)). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furthermore, we can determine the minimum number of slopes required for a given tree in linear time and compute the corresponding drawing efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The W-th Farey sequence is the sequence of all completely reduced fractions where the nominator and denominator is at most W in order of increasing size.

  2. 2.

    The incidence graph of a SAT formula has a vertex for each variable and clause and an edge for each occurrence of a variable in a clause between the corresponding vertices.

References

  1. Bachmaier, C., Brandenburg, F.J., Brunner, W., Hofmeier, A., Matzeder, M., Unfried, Thomas: Tree drawings on the hexagonal grid. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 372–383. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_36

    Chapter  Google Scholar 

  2. Bachmaier, C., Matzeder, M.: Drawing unordered trees on k-grids. J. Graph Algorithms Appl. 17(2), 103–128 (2013). https://doi.org/10.7155/jgaa.00287

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Universal slope sets for upward planar drawings. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 77–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_6

    Chapter  Google Scholar 

  4. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012). https://doi.org/10.1142/s0218195912500045

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994). https://doi.org/10.1007/BF01188716

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998). https://doi.org/10.1137/S0097539794279626

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunner, W., Matzeder, M.: Drawing ordered (k - 1)–any treees (k–grids. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 105–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7_10

    Chapter  MATH  Google Scholar 

  8. Brückner, G., Krisam, N.D., Mchedlidze, T.: Level-planar drawings with few slopes. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 559–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_42

    Chapter  Google Scholar 

  9. Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0_16

    Chapter  Google Scholar 

  10. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2(4), 187–200 (1992). https://doi.org/10.1016/0925-7721(92)90021-J

    Article  MathSciNet  MATH  Google Scholar 

  11. Culberson, J.C., Rawlins, G.J.E.: Turtlegons: generating simple polygons for sequences of angles. In: Proceedings of 1st Symposium on Computational Geometry (SoCG 1985), pp. 305–310. ACM (1985)

    Google Scholar 

  12. Czyzowicz, J.: Lattice diagrams with few slopes. J. Comb. Theory Ser. A 56(1), 96–108 (1991). https://doi.org/10.1016/0097-3165(91)90025-C

    Article  MathSciNet  MATH  Google Scholar 

  13. Czyzowicz, J., Pelc, A., Rival, I.: Drawing orders with few slopes. Discrete Math. 82(3), 233–250 (1990). https://doi.org/10.1016/0012-365X(90)90201-R

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)

    Google Scholar 

  15. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61(2), 175–198 (1988). https://doi.org/10.1016/0304-3975(88)90123-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with few slopes. J. Graph Algorithms Appl. 19(2), 707–741 (2015). https://doi.org/10.7155/jgaa.00376

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs with four slopes and optimal angular resolution. Theor. Comput. Sci. 714, 51–73 (2018). https://doi.org/10.1016/j.tcs.2017.12.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-bend upward planar slope number of SP-digraphs. Comput. Geom. 90, 101628 (2020). https://doi.org/10.1016/j.comgeo.2020.101628

    Article  MathSciNet  MATH  Google Scholar 

  19. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discrete Math. 23(4), 1842–1899 (2010). https://doi.org/10.1137/070696854

    Article  MathSciNet  MATH  Google Scholar 

  20. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007). https://doi.org/10.1016/j.comgeo.2006.09.002

    Article  MathSciNet  MATH  Google Scholar 

  21. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38(3), 181–193 (2007). https://doi.org/10.1016/j.comgeo.2006.08.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Frati, F.: On minimum area planar upward drawings of directed trees and other families of directed acyclic graphs. Int. J. Comput. Geom. Appl. 18(03), 251–271 (2008). https://doi.org/10.1142/S021819590800260X

    Article  MathSciNet  MATH  Google Scholar 

  23. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartley, R.I.: Drawing polygons given angle sequences. Inf. Process. Lett. 31(1), 31–33 (1989)

    Article  MathSciNet  Google Scholar 

  25. Healy, P., Lynch, K.: Two fixed-parameter tractable algorithms for testing upward planarity. Int. J. Found. Comput. Sci. 17(05), 1095–1114 (2006). https://doi.org/10.1142/S0129054106004285

    Article  MathSciNet  MATH  Google Scholar 

  26. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesař, M., Vyskočil, T.: The planar slope number of planar partial 3-trees of bounded degree. Graphs Comb. 29(4), 981–1005 (2013). https://doi.org/10.1007/s00373-012-1157-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013). https://doi.org/10.1137/100815001

    Article  MathSciNet  MATH  Google Scholar 

  28. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. J. Graph Algorithms Appl. 22(3), 501–518 (2018). https://doi.org/10.7155/jgaa.00474

    Article  MathSciNet  MATH  Google Scholar 

  29. Klawitter, J., Mchedlidze, T.: Upward planar drawings with two slopes. Arxiv report (2021), http://arxiv.org/abs/2106.02839

  30. Klawitter, J., Zink, J.: Upward planar drawings with three slopes. Arxiv report (2021). http://arxiv.org/abs/2103.06801

  31. Knauer, K., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Comput. Geom. 47(5), 614–624 (2014). https://doi.org/10.1016/j.comgeo.2014.01.003

    Article  MathSciNet  MATH  Google Scholar 

  32. Kraus, R.: Level-außenplanare zeichnungen mit wenigen steigungen. Bachelor Thesis, University of Würzburg (2020)

    Google Scholar 

  33. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4_36

    Chapter  Google Scholar 

  34. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_25

    Chapter  MATH  Google Scholar 

  35. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions. Comput. Geom. 42(9), 842–851 (2009). https://doi.org/10.1016/j.comgeo.2009.01.005

    Article  MathSciNet  MATH  Google Scholar 

  36. Nöllenburg, M.: Automated drawing of metro maps. Diploma Thesis, University of Karlsruhe (TH) (2010)

    Google Scholar 

  37. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Visual. Comput. Graph. 17(5), 626–641 (2011). https://doi.org/10.1109/TVCG.2010.81

    Article  Google Scholar 

  38. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electron. J. Comb. 13(1), N1 (2006)

    Article  MathSciNet  Google Scholar 

  39. Papakostas, A.: Upward planarity testing of outerplanar dags (extended abstract). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58950-3_385

    Chapter  Google Scholar 

  40. Quapil, V.: Bachelor thesis on slope drawings. In: Jungeblut, P (ed.) Karlsruhe Institute of Technology (2021)

    Google Scholar 

  41. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  42. Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994). https://doi.org/10.1093/comjnl/37.2.139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klawitter, J., Zink, J. (2021). Upward Planar Drawings with Three and More Slopes. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92931-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92930-5

  • Online ISBN: 978-3-030-92931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics