Skip to main content

Karst Landscapes in Austria

  • Chapter
  • First Online:
Landscapes and Landforms of Austria

Part of the book series: World Geomorphological Landscapes ((WGLC))

  • 1000 Accesses

Abstract

The term karst refers to specific geomorphological processes and thereof resulting in characteristic landscapes. About one-fifth of Austria consists of lithologies—mainly limestone, dolomite, and marble—susceptible to dissolution (i.e. karstification). Those lithologies occur in every landscape including the complete range of altitude: Northern Calcareous Alps, Southern Calcareous Alps, Helvetic units, Central Eastern Alps, Bohemian Massif, Alpine forelands, and Neogene basins. Consequently, Austrian karst landscapes are also subjected to a suite of non-karstic geomorphological processes, resulting in a great variety of endo- and exokarst features with distinct modifications. Small-scale solution features (karren) and dolines are very common. At high altitudes, these features have been exposed to processes related to Pleistocene glaciations. Moreover, karst springs with high discharge variabilities are well-known hydrologic features. Austria hosts 18,100 caves, and some of them are amongst the longest and deepest in the world. Although the majority of the caves are of epigenetic origin, some caves are also related to hypogene speleogenesis. Imprints from human activities on the karst environment can be traced back to the Palaeolithic period. Today, human-karst interactions are of particular importance: karst aquifers provide the catchment areas for drinking water supply for several municipals and karst landscapes represent resources for tourism, recreation, and furthermore. Not least, research in karst and caves makes an important contribution to science (e.g. palaeoclimatology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer C (2015) Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 250:78–88. https://doi.org/10.1016/j.geomorph.2015.08.015

    Article  Google Scholar 

  • Bauer C, Kellerer-Pirklbauer A (2010) Human impacts on karst environment: a case study from Central Styria. Z Geomorphol 54:1–26

    Article  Google Scholar 

  • Bauer F (1962) Nacheiszeitliche Karstformen in den österreichischen Kalkalpen. In: Proceedings of the 2nd International Congress of speleology, pp 299–328

    Google Scholar 

  • Baroň I, Plan L, Sokol L, Grasemann B, Melichar R, Mitrovic I, Stemberk J (2019) Present-day kinematic behaviour of active faults in the Eastern Alps. Tectonophysics 752:1–23. https://doi.org/10.1016/j.tecto.2018.12.024

    Article  Google Scholar 

  • Behrens H, Benischke R, Bricelj M, Harum T, Käss W, Kosi G. Leditzky HP, Leibundgut C, Małoszewski P, Maurin N, Rajner V, Rank D, Reichart B, Stadler H, Stichler W, Trimborn P, Zojer H, Zupan M (1992) Investigations with Natural and Artificial Tracers in the Karst Aquifer of the Lurbach System (Peggau-Tanneben-Semriach, Austria). Steir. Beitr. Hydrogeologie 43 Graz

    Google Scholar 

  • Benischke R, Kusch H, Wagner T (2016a) Mittelsteirischer Karst. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 701–718

    Google Scholar 

  • Benischke R, Stadler H, Völkl G (2016b) Karstquellen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 73–96

    Google Scholar 

  • BMWFW (2017) Österreichisches Montan-Handbuch 2017. Bundesministerium für Wissenschaft, Forschung und Wirtschaft. www.bmnt.gv.at/energie-bergbau/bergbau/Montanhandbuch.html. abgerufen 21 Jan 2019

  • Bock H (1913) Charakter des Mittelsteirischen Karstes. Mitteilungen Für Höhlenkunde 6:5–19

    Google Scholar 

  • Bock H, Dolischka A (1953) Plan der Lurgrotte Peggau – Semriach, M = 1:2.500, Graz

    Google Scholar 

  • Brenčič M, Poltnig W (2008) Grundwasser der Karwanken. Versteckter Schatz. Vehling, Ljubliana

    Google Scholar 

  • Cvijić J (1893) Das Karstphänomen. Versuch Einer Morphologischen Monographie Geograph Abh 5:218–329

    Google Scholar 

  • De Waele J, Plan L, Audra P, Rossi A, Spötl C, Polyak V, Mcintosh B (2009) Kraushöhle (Austria): morphology and mineralogy of an alpine sulfuric acid cave. In: 15th International Congress of speleology, Kerville, Proceedings Part 2, pp 831–837

    Google Scholar 

  • Drenning A (1973) Die I. Wiener Hochquellenleitung. Magistrat der Stadt Wien, Abt. 31, Wasserwerk, Vienna

    Google Scholar 

  • Drenning A (1988) Die II. Wiener Hochquellenleitung. Magistrat der Stadt Wien, Abt. 31, Wasserwerk, Vienna

    Google Scholar 

  • Fink MH (1984) Das Karstgebiet beim Hochtor, Hohe Tauern (Salzburg-Kärnten). Die Höhle 35:127–134

    Google Scholar 

  • Flügel H, Nowotny A, Gross M (2011) Geologische Karte der Republik Österreich 1:50.000, Blatt 164 Graz. Austrian Geological Service, Vienna

    Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Frisch W, Kuhlemann J, Dunkl I, Székely B (2001) The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps—a mosaic stone in the geomorphological evolution of the Eastern Alps. Int J Earth Sci 90:500–518

    Article  Google Scholar 

  • Frisch W, Kuhlemann J, Dunkl I, Székely B, Vennemann T, Rettenbacher A (2002) Dachstein-Altfläche, Augenstein-Formation und Höhlenentwicklung – die Geschichte der letzten 35 Millionen Jahre in den zentralen Nördlichen Kalkalpen. Die Höhle 53:1–36

    Google Scholar 

  • Gasser D, Stüwe K, Fritz H (2010) Internal structural geometry of the Paleozoic of Graz. Int J Earth Sci 99:1067–1081. https://doi.org/10.1007/s00531-009-0446-0

    Article  Google Scholar 

  • Goldscheider N (2005) Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker. Eclogae Geol Helv 98:1–17

    Article  Google Scholar 

  • Goldscheider N, Hötzl H (1999) Hydrological characteristics of folded alpine karst systems exemplified by the Gottesacker plateau (German–Austrian Alps). Acta Carsologica 28(1):87–103

    Google Scholar 

  • Göppert N (2011) Karst geomorphology of carbonatic conglomerates in the Folded Molasse zone of the Northern Alps (Austria/Germany). Geomorphology 130:289–298

    Google Scholar 

  • Gulden B (2021) World’s longest and deepest caves. www.caverbob.com. Accessed 22 Dec 2021

  • Haseke-Knapczyk H (1989) Der Untersberg bei Salzburg. Veröffentl Des Österr Mab-Programms 15:1–223

    Google Scholar 

  • Häuselmann P, Plan L, Pointner P, Fiebig M (2020) Cosmogenic nuclide dating of cave sediments in the Eastern Alps and implications for erosion rates. Int J Speleol 49:107–118. https://doi.org/10.5038/1827-806X.49.2.2303

  • Hohenegger J, Rögl F, Ćoric S, Pervesler P, Lirer F, Roetzel R, Scholger R, Stingl K (2009) The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian J Earth Sci 122:102–132

    Google Scholar 

  • Hötzl H (1992) Karstgrundwasser. In: Käss W (ed) Geohydrologische Markierungstechnik, Lehrb. d. Hydrogeol. 9, Gebrüder Bornträger, Berlin/Stuttgart, pp 374–406

    Google Scholar 

  • Klampfer A, Plan L, Büchel E, Spötl C (2017) Neubearbeitung und Forschung im Schneckenloch, der längsten Höhle in Vorarlberg. Die Höhle 68:14–30

    Google Scholar 

  • Klebel E (1931) Alte Inschriften und Wappen. – Speläologische Monographien VII/IX: 98–105

    Google Scholar 

  • Klimchouk A (2015) The karst paradigm: changes, trends and perspectives. Acta Carsologica 44:289–313. https://doi.org/10.3986/ac.v44i3.2996

    Article  Google Scholar 

  • Krainer K (2005) Nationalpark Hohetauern, Geologie. Carinthia, Inssbruck

    Google Scholar 

  • Kraus F (1887) Der Hohlenstein bei Mariazell. Österreichische Touristen Zeitung 7(4)

    Google Scholar 

  • Kraus F (1894) Höhlenkunde. Facsimile reprint 2009, Die Höhle, Supplement 56

    Google Scholar 

  • Lauritzen SE (2001) Marble stripe karst of the Scandinavian Caledonides: an end-member in the contact karst spectrum. Acta Carsologica 30(2):47–79

    Google Scholar 

  • Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639

    Article  Google Scholar 

  • Mayer A, Raschko H, Wirth, J (1993) Die Höhlen des Kremstales. Die Höhle, supplement 33

    Google Scholar 

  • Modl D, Brandl M, Pacher M, Drescher-Schneider R (2014) Abriss der Erforschungsgeschichte der Repolusthöhle (Steiermark, Österreich) mit einem Bericht zur Feststellungsgrabung im Jahr 2010. Schild Von Steier 26:97–107

    Google Scholar 

  • Neugebauer-Maresch C (1993) Altsteinzeit im Osten Österreichs. Wiss Schriftenreihe Niederösterreichs 95(96/97):1–96

    Google Scholar 

  • Neuhuber S, Plan L, Gier S, Hintersberger E, Lachner J, Scholz D, Lüthgens C, Braumann S, Bodenlenz F, Voit K, Fiebig M (2022) Numerical age dating of cave sediments quantify vertical movement at the Alpine-Carpathian transition in the Plio- and Pleistocene. Geol Carpathica 71:539–557. https://doi.org/10.31577/GeolCarp.71.6.5

  • Oberender P, Plan L (2018) A genetic classification of caves and its application in eastern Austria. In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research. Theory, fieldwork and applications. Geological Society, London, Special Publications Geological Society of London, vol 466, pp 121–136

    Google Scholar 

  • Pavuza R (1998) Höhlen und Verkarstung. Die Höhle, Supplement 51:14–19

    Google Scholar 

  • Pavuza R, Oberneder P (2013) Karst denudation data from the Northern Calcareous Alps (Austria). Geomorfologický Sborník 11:61–62

    Google Scholar 

  • Pfarr T, Seebacher R, Plan L (2021) Die längsten und tiefsten Höhlen Österreichs. http://hoehle.org/laengste-tiefste. Accessed 20 Dec 2021

  • Pfiffner A (2015) Geologie der Alpen, 3. Auflage. UTB, Bern

    Google Scholar 

  • Plan L (2016) Oberflächenkarstformen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 23–34

    Google Scholar 

  • Plan L, Decker K, Faber R, Wagreich M (2008) Karst morphology and groundwater vulnerability of high alpine karst plateaus. Environ Geol 58:285–297. https://doi.org/10.1007/s00254-008-1605-5

    Article  Google Scholar 

  • Plan L, Grasemann B, Spötl C, Decker K, Boch R, Kramers J (2010) Neotectonic extrusion of the Eastern Alps: Constraints from U/Th dating of tectonically damaged speleothems. Geology 38(6):483–486. https://doi.org/10.1130/G30854.1

  • Plan L, Oberender P (2016) Höhlen in Österreich. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 11–22

    Google Scholar 

  • Plan L, Schober A, Scholz D, Spötl C, Pruner P, Bosák P (2015) Speleogenesis of the Hermannshöhle cave system (Austria): Constraints from 230Th/ U-dating and palaeomagnetic analysis. Int J Speleol 44:315–326. https://doi.org/10.5038/1827-806X.44.3.8

    Article  Google Scholar 

  • Plan L, Spötl C (2016) Hypogene Karsthöhlen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 49–60

    Google Scholar 

  • Posch-Trotzmüller G, Atzenhofer B, Hobiger G (2017) Gipsvorkommen in den Kalkalpen: Erdfallprävention mittels Geologie und Hydrochemie. In: Wimmer-Frey I, Römer A, Janda C (eds) Arbeitstagung 2017, Geol. Bundesanstalt, Wien, pp 42–45

    Google Scholar 

  • Salcher BC, Meurers B, Smit J, Decker K, Hölzel M, Wagreich M (2012) Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives. Tectonics 31:1–20. https://doi.org/10.1029/2011TC002979

    Article  Google Scholar 

  • Spötl C (2016) Südliche Kalkalpen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 719–730

    Google Scholar 

  • Spötl C, Boch R (2016) Höhlen in der Paläoklimaforschung. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 155–170

    Google Scholar 

  • Spötl C, Plan L (2016) Karst und Höhlen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 1–10

    Google Scholar 

  • Spötl C, Plan L, Christian E (2016) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz

    Google Scholar 

  • Steinwender C, Plan L (2011) Kontaktkarst im Bereich Murursprung-Rosskar (Lungau, Salzburg). Die Höhle 62:15–26

    Google Scholar 

  • Stummer G, Plan L, Mattes J (2016) Höhlenkundliche Organsiationen. In: Spötl C, Plan L, Christian E (eds) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp 391–498

    Google Scholar 

  • Tollmann A (1985) Geologie von Österreich, vol 2. Franz Deuticke, Vienna

    Google Scholar 

  • Trimmel H (1968) Höhlenkunde. Friedrich Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Trimmel H (1998) Karstlandschaftsschutz. CIPRA-Österreich, Wien

    Google Scholar 

  • Veress M, Zentai Z, Péntek K, Mitre Z et al (2013) Flow dynamics and shape of rinnenkarren systems. Geomorphology 198:115–127

    Google Scholar 

  • VÖH (2019) Schau! – Höhlen in Österreich. www.schauhoehlen.at. Accessed 20 Jan 2019

  • Wagner T, Fritz H, Stüwe K, Nestroy O, Rodnight H, Hellstrom J, Benischke R (2011) Correlations of cave levels, stream terraces and planation surfaces along the River Mur—timing of landscape evolution along the eastern margin of the Alps. Geomorphology 134:62–78. https://doi.org/10.1016/j.geomorph.2011.04.024

    Article  Google Scholar 

  • Weber L (1997) Basiskarte Geologie der Metallogenetischen Karte von Österreich 1:500000. Austrian Geological Service, Vienna

    Google Scholar 

  • Wiedl T, Harzhauser M, Piller WE (2012) Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58(4). https://doi.org/10.1007/s10347-011-0290-0

  • Zacher W (1990) Geologische Karte der Republik Österreich 1:50.000, Blatt 113 Mittelberg. Austrian Geological Service, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauer, C., Plan, L. (2022). Karst Landscapes in Austria. In: Embleton-Hamann, C. (eds) Landscapes and Landforms of Austria. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-92815-5_5

Download citation

Publish with us

Policies and ethics