Skip to main content

Synthesis of Chitooligosaccharides Derivatives

  • Chapter
  • First Online:
Chitooligosaccharides
  • 373 Accesses

Abstract

Chitosan is prepared with alkaline deacetylation of chitin in the presence of alkali at high temperature. Chitin and chitosan were applied in various fields. There are a lot of their derivatives which were synthesized to enhance biological activities and properties to easily apply in life. Furthermore, chitooligosaccharides (COSs) which were made from hydrolytic chitosan using acid or enzyme were modified COSs structure by introduction of functional groups at C-2, C-3 or C-6 positions on pyranose ring. This chapter provides the possible methods to produce oligomers of chitin and chitosan (chitin oligosaccharides, NA-COS; chitooligosaccharides, COSs) and some chemical methods for synthesis of their derivatives by grafting functional groups as inorganic or organic to improve biological activities. Some methods synthesize and isolate chitooligosaccharides such as carboxylated chitooligosaccharides, amino derived chitooligosaccharides, sulfated chitooligosaccharides, quaternized chitooligosaccharides, aryl chitooligosaccharides and phenolic acid conjugated chitooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 10:483–507. https://doi.org/10.2147/DDDT.S99651

    Article  CAS  Google Scholar 

  • Alishahi A, Aïder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioproc Tech 5:817–830

    Google Scholar 

  • Bui VH, Dao QA, Ngo DN (2017) Optimization of chitosan hydrolysis by Cellulase Enzyme to produce chitooligosaccharide. Sci Tech Dev J 20(K3):74–82. https://doi.org/10.32508/stdj.v20iK3.1095

  • Bui VH, Vo NHT, Ngo DN (2021) Antioxidant effect of syringic acid grafted chitooligosaccharides in RAW264.7 Cells. Molecular and cellular biology in medicine. Part of IFMBE proceeding book series (IFMBE, V 85), MME 2020. In: 8th International conference on the development of biomedical engineering in Vietnam. Online 26 August 2021. Springer, pp 501–516

    Google Scholar 

  • Bui VH, Ngo DN (2019) The research determines appropriate parameters in the synthesis process of syringic acid grafted chitooligosaccharides. Sci Tech Dev J 22(3):317–323. https://doi.org/10.32508/stdj.v22i3.1289

    Article  Google Scholar 

  • Einbu A, VÃ¥rum KM (2007) Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromol 8:309–314

    Article  CAS  Google Scholar 

  • Einbu A, Grasdalen H, VÃ¥rum KM (2007) Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr Res 342:1055–1062

    Article  CAS  Google Scholar 

  • Eom TK, Senevirathne M, Kim SK (2012) Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity environ. Toxicol Pharmacol 34(2):519–527. https://doi.org/10.1016/j.etap.2012.05.004

    Article  CAS  Google Scholar 

  • Eom TK, Ryu BM, Lee JK et al (2013) β-secretase inhibitory activity of phenolic acid conjugated chitooligosaccharides J Enzyme Inhib Med Chem 28(1):214–217

    Google Scholar 

  • Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H (2016) Modeling and optimization of degree of folate grafted on chitosan and carboxymethyl-chitosan. Prog Biomater 5:1–8

    Google Scholar 

  • Feng H, Xia W, Shan C et al (2015) Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. Int J Biol Macromol 72:364–369

    Article  CAS  Google Scholar 

  • Guinesi LS, Cavalheiro ETG (2006) Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr Polym 65:557–561

    Article  CAS  Google Scholar 

  • Guo Z, Liu H, Chen X et al (2006) Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorganic Med Chem Lett 16:6348–6350

    Article  CAS  Google Scholar 

  • Hong S, Ngo DN, Kim MM (2016) Inhibitory effect of aminoethyl-chitooligosaccharides on invasion of human fibrosarcoma cells. Environ Toxicol Pharmacol 45:309–314

    Article  CAS  Google Scholar 

  • Huang R, Du Y, Yang J (2003) Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydr Polym 51:431–438

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, Kim SK (2005) Factor affecting the free radical scavenging behavior of chitosan sulfate. Int J Biol Macromol 36:120–127

    Article  CAS  Google Scholar 

  • Huang R, Rajapakse N, Kim SK (2006) Structural factors affecting radial scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr Polym 63:122–129

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, Rajapakse N et al (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–2408

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, and Kim SK (2005a) Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification. Biorg Med Chem 13(11):3649–3655. https://doi.org/10.1016/j.bmc.2005.03.034

  • Je JY, Kim SK (2006) Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bioorg Med Chem 14:5989–5994

    Article  CAS  Google Scholar 

  • Je JY, Kim EK, Ahn CB et al (2007) Sulfated chitooligosaccharides as prolyl endopeptidase inhibitor. J Nutr Biochem 18:31–38

    Google Scholar 

  • Jeon YJ, Kim SK (2000) Production of chitooligosaccharides using an ultrfiltration membrane reactor and their antibacterial activity. Carbohydr Polym 41:133–141

    Article  CAS  Google Scholar 

  • Jeon YJ, Kim SK (2000) Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem 35:623–632

    Article  CAS  Google Scholar 

  • Jung WJ, Souleimanov A, Park RD et al (2007) Enzymatic production of N-acetyl chitooligosaccharides by crude enzyme derived from Paenibacillus illioisensis KJA-424. Carbohydr Polym 67:256–259

    Article  CAS  Google Scholar 

  • Kim MM, Kim SK (2006) Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase-2 in human dermal fibroblasts. FEBS Lett 580:2661–2666

    Article  CAS  Google Scholar 

  • Kim SK, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368

    Article  CAS  Google Scholar 

  • Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308–313

    Article  CAS  Google Scholar 

  • Kim SK, Ngo DN, Rajapakse N (2006) Therapeutic prospectives of Chitin, Chitosan and their derivatives. J Chitin Chitosan 11:1–10

    CAS  Google Scholar 

  • Liang TW, Chen YJ, Yen YH et al (2007) The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem 42:527–534

    Article  CAS  Google Scholar 

  • Liu J, Lu JF, Kan J et al (2013) Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. Int J Biol Macromol 62:321–329. https://doi.org/10.1016/j.ijbiomac.2013.09.032

    Article  CAS  Google Scholar 

  • Liu J, Wu HT, Lu JF et al (2015) Preparation and characterization of novel phenolic acid (hydroxybenzoic and hydroxycinnamic acid derivatives) grafted chitosan microspheres with enhanced adsorption properties for Fe(II). Chem Eng J 262:803–812. https://doi.org/10.1016/j.cej.2014.10.041

    Article  CAS  Google Scholar 

  • Liu Y, Yu F, Zhang B et al. (2019) Improving the protective effects of aFGF for peripheral nerve injury repair using sulfated chitooligosaccharides

    Google Scholar 

  • Mendis E, Kim MM, Rajapakse N et al (2007) An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 80:2118–2127

    Article  CAS  Google Scholar 

  • Lizardi-Mendoza J, Monal WMA, Valencia FMG (2016) Chitosan in the preservation of agricultural commodities: chapter 1: chemical characteristics and functional properties of chitosan. Elsevier Inc., pp 3–31. https://doi.org/10.1016/B978-0-12-802735-6.00001-X

  • Ngo DN, Qian ZJ, Je JY et al (2008) Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochem 43:119–123

    Article  CAS  Google Scholar 

  • Ngo DH, Qian ZJ, Ngo DN et al (2011) Gally chitooligosaccharides inhibit intracellular free radical-mediated oxidation. Food Chem 128:974–981. https://doi.org/10.1016/j.foodchem.2011.03.128

    Article  CAS  Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2012) Protective effects of aminoethyl-chitooligosaccharides against oxidative stress in mouse macrophage RAW 264.7 cells. Int J Biol Macromol 50:624–631. https://doi.org/10.1016/j.ijbiomac.2012.01.036

    Article  CAS  Google Scholar 

  • Ngo DH, Ngo DN, Kim SK et al (2019) Antiproliferative effect of aminoethyl-chitooligosaccharide on human lung A549 cancer cells. Biomol 9:195. https://doi.org/10.3390/biom9050195

    Article  CAS  Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2007) Effects of chitin oligosaccharides on production of reactive oxygen species and matrix metalloproteinases in live cells. Advances in chitin science. Ankara, pp 355–359

    Google Scholar 

  • Ngo DN, Lee SH, Kim MM et al (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1(2):188–198

    Google Scholar 

  • Ngo DH, Qian ZJ, Vo TS et al (2011) Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells. Carbohydr Polym 84(4):1282–1288. https://doi.org/10.1016/j.carbpol.2011.01.022

  • Nguyen AD, Vo TPK, Pham QA et al (2007) Study on hydrolysis of chitosan by cellulase combined with gamma irradiation. Advances in chitin science, vol 10. Antalya. 96–100

    Google Scholar 

  • Nguyen ND, Dang VP, Nguyen TA et al (2011) Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide Radiat. Phys Chem 80(7):848–853

    CAS  Google Scholar 

  • Okamura Y, Nomura A, Minami S et al (2005) Effects of chitin/ chitosan and their oligomers/monomers on release of type I collagenase from fibroblasts. Biol Macromol 6:2382–2384

    CAS  Google Scholar 

  • Park PJ, Je JY, Kim SK (2004) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55:17–22

    Article  CAS  Google Scholar 

  • Pasanphan W, Chirachanchai S (2008) Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant. Carbohydr Polym 72:169–177

    Article  CAS  Google Scholar 

  • Qin C, Zhou B, Zeng L et al (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 84:107–115

    Article  CAS  Google Scholar 

  • Rajapakse N, Kim MM, Mendis E et al (2007) Inhibition of free radical-mediated oxidation of cellular biomolecules by carboxylated chitooligosaccharides. Bioorg Med Chem 15:997–1003

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rødde RH, Einbu A, VÃ¥rum KM (2008) Seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis) Carbohydr. Polym 71:388–393

    Google Scholar 

  • Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biometerials. Prog Polym Sci 29:887–908

    Article  CAS  Google Scholar 

  • Shao J, Yang Y, Zhong Q (2003) Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polym Degrad Stab 82(3):395–398. https://doi.org/10.1016/S0141-3910(03)00177-0

    Article  CAS  Google Scholar 

  • Sun T, Zhou D, Mao F et al (2007) Preparation of low-molecular-weight carboxymethyl chitosan and their superoxide anion scavenging activity. Eur Polym J 43:652–656

    Article  CAS  Google Scholar 

  • Trinh MDL, Ngo DH, Tran DK et al (2014) Prevention of H2O2-induced oxidative stress in chang liver cells by 4-hydroxybenzyl-chitooligomers carbohydr. Polym 103:502–509

    CAS  Google Scholar 

  • Trinh MDL, Dinh MH, Ngo DH et al (2014) Protection of 4-hydroxybenzyl-chitooligomers against inflammatory responses in chang liver cells. Int J Biol Macromol 66:1–6. https://doi.org/10.1016/j.ijbiomac.2014.01.064

    Article  CAS  Google Scholar 

  • Vo TS, Ngo DH, Bach LG et al (2017) The free radical scavenging and anti-inflammatory activities of gallate-chitooligosaccharides in human lung epithelial A549 cells. Process Biochem 54:188–194. https://doi.org/10.1016/j.procbio.2017.01.001

    Article  CAS  Google Scholar 

  • Vongchan P, Sajomsang W, Kasinrerk W (2003) Anticoagulant activities of the chitosan polysulfate synthesized from marine crab shell by semi-heterogeneous conditions. Sci Asia. 29:115–120

    Article  CAS  Google Scholar 

  • Wu H, Yao Z, Bai X (2008) Anti-angiogenic activities of chitooligosaccharides. Carbohydr Polym 73:105–110

    Article  CAS  Google Scholar 

  • Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701

    Article  CAS  Google Scholar 

  • Xie H, Jia Z, Huang J et al (2012) Preparation of low molecular weight chitosan by complex enzymes hydrolysis. Chem Reag 3:180–186

    Google Scholar 

  • Xing R, Liu S, Yu H et al (2005) Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr Res 340:2150–2153

    Article  CAS  Google Scholar 

  • Xing R, Liu S, Guo Z et al (2005) Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorg Med Chem 13:1573–1577

    Article  CAS  Google Scholar 

  • Yen MT, Tseng YH, Li RC et al (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT 40:255–261

    Article  CAS  Google Scholar 

  • Yoon NY, Ngo DN, Kim SK (2009) Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr Polym 78:869–872

    Article  CAS  Google Scholar 

  • Yue W, Yao P, Wei Y et al (2008) Synergetic effect of ozone and ultrasonic radiation on degradation of chitosan. Polym Degrad Stab 93:1814–1821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Nghiep Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ngo, DN., Kim, SK. (2022). Synthesis of Chitooligosaccharides Derivatives. In: Kim, SK. (eds) Chitooligosaccharides. Springer, Cham. https://doi.org/10.1007/978-3-030-92806-3_4

Download citation

Publish with us

Policies and ethics