Skip to main content

Generalities on Linear Matrix Inequalities and Observer Design of Linear Systems

  • Chapter
  • First Online:
Advances in Observer Design and Observation for Nonlinear Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 410))

  • 375 Accesses

Abstract

In this chapter, the Linear Matrix Inequalities (LMIs) are presented. The terms “observability” and “observer” were also discussed. A design of linear observer-based control using the technique of LMIs is described, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, S.S.L., Peng, T.K.C.: Adaptive guaranteed cost control systems with uncertain parameters. IEEE Trans. Autom. Control 17, 474–483 (1972)

    Google Scholar 

  2. Wonham, W.M.: Optimal stationary control of linear system with state dependent noise. SIAM J. Control (1967)

    Google Scholar 

  3. Camozzi, P.: Uncertain Modeling Systems: control by Placement. of pole, Thesis, Paul Sabatier University of Toulouse, France (1995)

    Google Scholar 

  4. Bien, Z., Kim, J.H.: A robust stability bound of linear system with structured uncertainty. IEEE Trans. Autom. Control 37(10), 1549–1551 (1992)

    Google Scholar 

  5. Gao, Z., Antsaklis, P.J.: Explicit asymmetric bounds for robust stability of continuous and discret-time systems. IEEE Trans. Autom. Control 38, 332–335 (1993)

    Google Scholar 

  6. Lyapunov, A.M.: General problem of stability of movement. Ann. Fac. Sci. Toulouse 9, 203–474 (1907)

    Google Scholar 

  7. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

    MATH  Google Scholar 

  8. Parks, P.C., Hahn, V.: Stabililtäts Theorie. Springer, Berlin (1981)

    Google Scholar 

  9. Khalil, H.K.: Nonlinear System. Prentice Hall, Upper Saddle River, N. J. 07458 (1996)

    Google Scholar 

  10. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Prentice Hall Information ans System Sciences Series, N. J. 07632 (1989)

    Google Scholar 

  11. Borne, P., Dauphin-Tanguy, G., Richard, J.P., Rotella, F., Zambettakis, I.: Analysis and Regulation of Industrial Processes. Technip, Paris (1993)

    Google Scholar 

  12. Lien, C.H.: An efficient method to design robust observer-based control of uncertain linear systems. Appl. Math. Comput. 158, 29–44 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Hua, C., Li, F., Guan, X.: Observer-based adaptive control for uncertain time delay systems. Inf. Sci. (2004). (Article in press)

    Google Scholar 

  14. Chadli, M., Maquin, D., Ragot, J.: On the stability of multiple model systems. In: Proceedings of the European Control Conference, pp. 1894–1899 (2001)

    Google Scholar 

  15. Tanaka, K., Ikeda, T., He, Y.Y.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based design. IEEE Trans. Fuzzy Syst. 6(1), 250–256 (1998)

    Google Scholar 

  16. Luenberger, D.G.: Determining the state of the linear system with observers of low dynamic order, Ph.D. dissertation, Departement of Elec. Engineers., Stanford University, California (1963)

    Google Scholar 

  17. Lewis, F.L.: A survey of linear singular systems. Circuits Syst. Signal Process 5, 3–36 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Chen, J., Zhang, HH.: Robust detection of faulty actuators via unknown input observers. Int. J. Syst. Sci. 22, 1829–1839 (1991)

    Google Scholar 

  19. Soffker, D.: Fault detection using proportional integral observers for application to elastic mechanical structures. In: Proceeding of the Multiconference CESA IMACS, Symposium on Control, Optimization and Supervision. Lille, France, pp. 522–527 (1996)

    Google Scholar 

  20. Jiang, G.P., Wang, S.P., Song, W.Z.: Design of observer with intergrators for linear systems with unknown input disturbances. Electron. Lett. 36(13), 1168–1169 (2000)

    Google Scholar 

  21. Chadli, M., Maquin, D., Ragot, J.: Nonquadratic stability analysis of Takagi Sugeno models. IEEE Conf. Decision Control 2, 2143–2148 (2002)

    Google Scholar 

  22. Karamarkar, N.: A new polynomial time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    MathSciNet  Google Scholar 

  23. Nesterov, Y., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Autom. Control 39(12), 2469–2471 (1994)

    Google Scholar 

  24. Hassibi, A., How, J., Boyd, S.: A path-following method for solving BMI problems in control. In: American Control Conference, vol. 2, pp. 1385–1389. San Diego, California (1999)

    Google Scholar 

  25. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Google Scholar 

  26. Chilali, M., Gabinet, P.: H∞ Design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41(3), 358–367 (1996)

    Google Scholar 

  27. Fossard, A.J., Normand-Cyrot, D.: Système Non Linéaire, Tome 1 : Modeling-Estimation. Masson, Paris (1993)

    Google Scholar 

  28. O’Reilly, J.: Observer for Linear System, Richard Bellman, Mathematics in Science and Engineering, vol. 140. Academic Press, New York (1983)

    Google Scholar 

  29. Follinger, O.: Regelungstechnik—Einführung in die methoden und ihre anwendungen. Dr. Alfred Huthig Verlag, Heidelberg (1985)

    Google Scholar 

  30. Borne, P., Dauphin-Tanguy, G., Richard, J.P., Rotella, F., Zambettakis, I.: Modeling and Identification of Processes, Tome 1. Editions Technip, Paris (1992)

    Google Scholar 

  31. Kalman, R.E., Betram, J.E.: Control system analysis and design via the “second method” of Lyapunov -I : Continuous-time system. ASME J. Basic Eng. 82, 371–393 (1960)

    Google Scholar 

  32. Borne, P., Dauphin-Tanguy, G., Richard, J.P., Rotella, F., Zambettakis, I.: Control and Optimization of Processes, Collection of Engineering Methods and Techniques. Editions Technip, Paris (1990)

    Google Scholar 

  33. Magni, J.F., Mouyon, P.: A generalized approach to observers for fault diagnosis. In: Proceedings of the 30th Conference on Decision and Control, vol. 3, pp. 2236–2241. Brignton, England (1991)

    Google Scholar 

  34. Dieulessaint, E., Royer, D.: Linear control systems with Brignton sampled signals. Autom. Appl. Masson (1994)

    Google Scholar 

  35. Flugge-Lotz, I., Taylor, C.: Synthesis of nonlinear control systems. IRE Trans. Autom. Control 1(1), 3–9 (1956)

    Google Scholar 

  36. Letov, A.M.: Conditionally stable control systems (on a class of optimal control systems). Autom. Remote Control 7, 649–664 (1957)

    Google Scholar 

  37. Maslennikov, V.A.: High-quality control of neutral plants by means of an astatic controller. Autom. Remote Control 2 (1956)

    Google Scholar 

  38. Ostrovsky, G.M.: Application of nonlinear correction to control systems of the second order. Autom. Remote Control 11 (1956)

    Google Scholar 

  39. Utkin, V.I.: Principles of identification using sliding regimes. Soviet Trans. Autom. Control 26, 271–272 (1981)

    MATH  Google Scholar 

  40. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(22), 212–222 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darwich, I., Etlili, D., Errachdi, A., Naifar, O. (2022). Generalities on Linear Matrix Inequalities and Observer Design of Linear Systems. In: Naifar, O., Ben Makhlouf, A. (eds) Advances in Observer Design and Observation for Nonlinear Systems. Studies in Systems, Decision and Control, vol 410. Springer, Cham. https://doi.org/10.1007/978-3-030-92731-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92731-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92730-1

  • Online ISBN: 978-3-030-92731-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics