Skip to main content

Revocable Data Sharing Methodology Based on SGX and Blockchain

  • Conference paper
  • First Online:
Network and System Security (NSS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13041))

Included in the following conference series:

Abstract

Data sharing methodology has recently been an active research area due to the development of information technology. As blockchain gets popular, decentralized storage mode becomes a favorable method for data sharing. Moreover, non-repudiation, confidentiality, revocability and fine-grained access are sometimes indispensable in practice. In light of these requirements, we propose a solution by combining decentralized ciphertext-policy attribute-based encryption (CP-ABE) and Software Guard eXtension (SGX) with blockchain. In our framework, the use of blockchain makes shared data publicly accessible and undeniable. To ensure confidentiality and fine-grained access control, we take advantage of decentralized CP-ABE to encrypt data. SGX is utilized as a key management service for the decentralized CP-ABE, making our data sharing methodology revocable without updating ciphertext. Overall, our methodology achieves privacy protection, revocability and decentralized fine-grained access. In addition, we perform experiments on Ethereum, and the results demonstrate that our approach is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ethereum/go-ethereum, Accessed: Nov 2020.

  2. 2.

    https://jhuisi.github.io/charm/, Accessed: Sep. 2020.

  3. 3.

    Ganache: https://www.trufflesuite.com/ganache.

References

  1. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access control in cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9, March 2010

    Google Scholar 

  2. Xu, Y., Zeng, Q., Wang, G., Zhang, C., Ren, J., Zhang, Y.: An efficient privacy-enhanced attribute-based access control mechanism. Concurr. Comput. Pract. Exp. 32, e5556 (2020). https://doi.org/10.1002/cpe.5556

    Article  Google Scholar 

  3. Zheng, B.K., Zhu, L.H., Shen, M., et al.: Scalable and privacy preserving data sharing based on blockchain. J. Comput. Sci. Technol. 33(3), 557–567 (2018)

    Article  MathSciNet  Google Scholar 

  4. Zhu, L., Wu, Y., Gai, K., Choo, K.K.R.: Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 91, 527–535 (2019)

    Article  Google Scholar 

  5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report (2008). http://bitcoin.org/bitcoin.pdf. Accessed October 2019

  6. Costan, V., Devadas, S.: Intel SGX explained. Technical report, Cryptology ePrint Archive, Report 2016/086 (2016). https://eprint.iacr.org/2016/086. Accessed October 2019

  7. Li, J., Zhang, Y., Chen, X., Xiang, Y.: Secure attribute-based data sharing for resource-limited users in cloud computing. Comput. Secur. 72, 1–12 (2018)

    Article  Google Scholar 

  8. Wu, A., Zhang, Y., Zheng, X., et al.: Efficient and privacy-preserving traceable attribute-based encryption in blockchain. Ann. Telecommun. 74, 401–411 (2019)

    Article  Google Scholar 

  9. Wood, G.: Ethereum: a secure decentralized generalised transaction ledger. Ethereum Project Yellow Paper (2014). https://ethereum.github.io/yellowpaper/paper.pdf. Accessed October 2019

  10. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  11. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19

    Chapter  Google Scholar 

  12. Beimel, A.: Secure schemes for secret sharing and key distribution [Ph.D. thesis]. Israel Institute of Technology, Technion, Haifa, Israel (1996)

    Google Scholar 

  13. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what it is, and what it is not. In: Proceedings of 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, pp. 57–64 (2015)

    Google Scholar 

  14. Lind, J., et al.: Teechan: payment channels using trusted execution environments. ArXiv arXiv:1612.07766 (2016). N. pag

  15. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: Proceedings of IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, pp. 839–858 (2016)

    Google Scholar 

  16. Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain consensus protocol. In: Proceedings of1st Workshop System Software, pp. 1–6 (2016)

    Google Scholar 

  17. Yuan, R., Xia, Y.-B., Chen, H.-B., Zang, B.-Y., Xie, J.: ShadowEth: private smart contract on public blockchain. J. Comput. Sci. Technol. 33(3), 542–556 (2018). https://doi.org/10.1007/s11390-018-1839-y

    Article  Google Scholar 

  18. Shetty, S., Liang, X., Bowden, D., Zhao, J., Zhang, L.: Blockchain-based decentralized accountability and self-sovereignty in healthcare systems. In: Treiblmaier, H., Beck, R. (eds.) Business Transformation through Blockchain, pp. 119–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99058-3_5

    Chapter  Google Scholar 

  19. Wang, S., Zhang, D., Zhang, Y., Liu, L.: Efficiently revocable and searchable attribute-based encryption scheme for mobile cloud storage. IEEE Access 6, 30444–30457 (2018)

    Article  Google Scholar 

  20. Guo, R., Shi, H., Zheng, D., Jing, C., Zhuang, C., Wang, Z.: Flexible and efficient blockchain-based ABE scheme with multi-authority for medical on demand in telemedicine system. IEEE Access 7, 88012–88025 (2019)

    Article  Google Scholar 

  21. Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H., You, I.: Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing. Inf. Sci. 379, 42–61 (2017)

    Article  Google Scholar 

  22. He, Y., Chen, Y.C., Guo, Z.Y., Tso, R., Ye, S.Z.: Smart contract-based decentralized privacy system for securing data ownership management. Commun. CCISA 25, 1–21 (2019)

    Google Scholar 

  23. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access 6, 38437–38450 (2008)

    Article  Google Scholar 

  24. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Security and Privacy Workshops, pp. 180–184, May 2015

    Google Scholar 

  25. Dai, W., Dai, C., Choo, K.R., Cui, C., Zou, D., Jin, H.: SDTE: a secure blockchain-based data trading ecosystem. IEEE Trans. Inf. Forensics Secur. 15, 725–737 (2020)

    Article  Google Scholar 

  26. Matetic, S., Wust, K., Schneider, M., Kostiainen, K., Karame, G.O., Capkun, S.: BITE: bitcoin lightweight client privacy using trusted execution. IACR Cryptology ePrint Archive (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Kan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Kan, H., Xu, Y., Ran, J. (2021). Revocable Data Sharing Methodology Based on SGX and Blockchain. In: Yang, M., Chen, C., Liu, Y. (eds) Network and System Security. NSS 2021. Lecture Notes in Computer Science(), vol 13041. Springer, Cham. https://doi.org/10.1007/978-3-030-92708-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92708-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92707-3

  • Online ISBN: 978-3-030-92708-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics