Skip to main content

Error Control and Adaptivity for the Finite Cell Method

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 98))

  • 744 Accesses

Abstract

In this work, we discuss a posteriori error control and adaptivity in the setting of the finite cell method (FCM). For this purpose, we introduce k-times differentiable basis functions for hp-adaptive meshes consisting of paraxial rectangles with arbitrary-level hanging nodes suitable for the immersed-boundary setting of the FCM. Furthermore, we present error control for Poisson’s problem in the context of the finite cell method. To this end, we establish a reliable residual-based estimator for the energy error. Additionally, we introduce a dual-weighted residual estimator capable of separating the discretization error from the quadrature error which poses a second error source typically arising in the FCM. Several numerical experiments illustrate the reliability and efficiency properties of the estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abedian, A. Düster, Equivalent Legendre polynomials: numerical integration of discontinuous functions in the finite element methods. Comput. Methods Appl. Mech. Eng. 343, 690–720 (2019)

    Article  MathSciNet  Google Scholar 

  2. A. Abedian, J. Parvizian, A. Düster, E. Rank, The finite cell method for the J2 flow theory of plasticity. Finite Elem. Anal. Des. 69, 37–47 (2013)

    Article  Google Scholar 

  3. W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations (Birkhäuser, 2013)

    Google Scholar 

  4. H. Blum, A. Schröder, F.T. Suttmeier, A posteriori estimates for FE-solutions of variational inequalities, in Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2001 the 4th European Conference on Numerical Mathematics and Advanced Applications Ischia, July 2001. ed. by F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Springer Milan, Milano, 2003), pp. 669–680

    Chapter  Google Scholar 

  5. D. Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie (Springer, 2013)

    Google Scholar 

  6. E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  Google Scholar 

  7. A. Byfut, A. Schröder, A fictitious domain method for the simulation of thermoelastic deformations in nc-milling processes. Int. J. Numer. Methods Eng. 113(2), 208–229 (2017)

    Article  MathSciNet  Google Scholar 

  8. A. Byfut, A. Schröder, Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in \(H^1\)-conforming higher-order finite element methods. Comput. Math. Appl. 73(9), 2092–2150 (2017)

    Article  MathSciNet  Google Scholar 

  9. D.M. Causon, D.M. Ingram, C.G. Mingham, A Cartesian cut cell method for shallow water flows with moving boundaries. Adv. Water Resour. 24(8), 899–911 (2001)

    Article  Google Scholar 

  10. M. Dauge, A. Düster, E. Rank, Theoretical and numerical investigation of the finite cell method. J. Sci. Comput. 65(3), 1039–1064 (2015)

    Article  MathSciNet  Google Scholar 

  11. P. Di Stolfo, A. Düster, S. Kollmannsberger, E. Rank, A. Schröder, A posteriori error control for the finite cell method. PAMM 19(1), e201900419 (2019)

    Google Scholar 

  12. P. Di Stolfo, A. Rademacher, A. Schröder, Dual weighted residual error estimation for the finite cell method. J. Numer. Math. 27(2), 101–122 (2019)

    Article  MathSciNet  Google Scholar 

  13. P. Di Stolfo, A. Schröder, \(C^k\) and \(C^0\)\(hp\)-finite elements on \(d\)-dimensional meshes with arbitrary hanging nodes. Finite Elem. Anal. Des. 192, 103529 (2021)

    Google Scholar 

  14. P. Di Stolfo, A. Schröder, Reliable residual-based error estimation for the finite cell method. J. Sci. Comput. 87(12) (2021)

    Google Scholar 

  15. P. Di Stolfo, A. Schröder, N. Zander, S. Kollmannsberger, An easy treatment of hanging nodes in hp-finite elements. Finite Elem. Anal. Des. 121, 101–117 (2016)

    Article  MathSciNet  Google Scholar 

  16. S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali, E.H. van Brummelen, Error-estimate-based adaptive integration for immersed isogeometric analysis. Comput. Math. Appl. 80(11), 2481–2516 (2020). https://doi.org/10.1016/j.camwa.2020.03.026

  17. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  18. A. Düster, O. Allix, Selective enrichment of moment fitting and application to cut finite elements and cells. Comput. Mech. 65(2), 429–450 (2020)

    Article  MathSciNet  Google Scholar 

  19. A. Düster, S. Hubrich, Adaptive integration of cut finite elements and cells for nonlinear structural analysis, in Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids (Springer, 2020), pp. 31–73

    Google Scholar 

  20. A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197(45), 3768–3782 (2008)

    Article  MathSciNet  Google Scholar 

  21. K.J. Fidkowski, D.L. Darmofal, Output-based adaptive meshing using triangular cut cells. Technical report, Aerospace Computational Design Laboratory, Dept. of Aeronautics (2006)

    Google Scholar 

  22. K.J. Fidkowski, D.L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 225(2), 1653–1672 (2007)

    Google Scholar 

  23. W. Garhuom, S. Hubrich, L. Radtke, A. Düster, A remeshing strategy for large deformations in the finite cell method. Comput. Math. Appl. 80(11), 2379–2398 (2020). https://doi.org/10.1016/j.camwa.2020.03.020. http://www.sciencedirect.com/science/article/pii/S0898122120301243

  24. R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111(3–4), 283–303 (1994)

    Article  MathSciNet  Google Scholar 

  25. S. Heinze, T. Bleistein, A. Düster, S. Diebels, A. Jung, Experimental and numerical investigation of single pores for identification of effective metal foams properties. Zeitschrift für Angewandte Mathematik und Mechanik 98, 682–695 (2018). https://doi.org/10.1002/zamm.201700045

    Article  MathSciNet  Google Scholar 

  26. S. Heinze, M. Joulaian, A. Düster, Numerical homogenization of hybrid metal foams using the finite cell method. Comput. Math. Appl. 70, 1501–1517 (2015). https://doi.org/10.1016/j.camwa.2015.05.009

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Hubrich, P. Di Stolfo, L. Kudela, S. Kollmannsberger, E. Rank, A. Schröder, A. Düster, Numerical integration of discontinuous functions: moment fitting and smart octree. Comput. Mech. 60(5), 863–881 (2017)

    Article  MathSciNet  Google Scholar 

  28. S. Hubrich, A. Düster, Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting. Comput. Math. Appl. 77(7), 1983–1997 (2019)

    Article  MathSciNet  Google Scholar 

  29. L. Hug, S. Kollmannsberger, Z. Yosibash, E. Rank, A 3d benchmark problem for crack propagation in brittle fracture. Comput. Methods Appl. Mech. Eng. 364, 112905 (2020)

    Google Scholar 

  30. M. Joulaian, S. Hubrich, A. Düster, Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput. Mech. 57(6), 979–999 (2016)

    Article  MathSciNet  Google Scholar 

  31. D. Knees, A. Schröder, Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints. Math. Methods Appl. Sci. 35(15), 1859–1884 (2012)

    Article  MathSciNet  Google Scholar 

  32. S. Kollmannsberger, D. D’Angella, E. Rank, W. Garhuom, S. Hubrich, A. Düster, P. Di Stolfo, A. Schröder, Spline- and hp-Basis Functions of Higher Differentiability in the Finite Cell Method (GAMM-Mitteilungen, 2019)

    Google Scholar 

  33. L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, E. Rank, Efficient and accurate numerical quadrature for immersed boundary methods. Adv. Model. Simul. Eng. Sci. 2(1), 10 (2015)

    Article  Google Scholar 

  34. L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: accurately integrating discontinuous functions in 3D. Comput. Methods Appl. Mech. Eng. 306, 406–426 (2016)

    Article  MathSciNet  Google Scholar 

  35. J.M. Melenk, hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation. SIAM J. Numer. Anal. 43(1), 127–155 (2005)

    Article  MathSciNet  Google Scholar 

  36. J.M. Melenk, B.I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM. Adv. Comput. Math. 15(1–4), 311–331 (2001)

    Article  MathSciNet  Google Scholar 

  37. E. Nadal, J. Ródenas, J. Albelda, M. Tur, J. Tarancón, F. Fuenmayor, Efficient finite element methodology based on cartesian grids: application to structural shape optimization, in Abstract and Applied Analysis (Hindawi, 2013)

    Google Scholar 

  38. M. Nemec, M. Aftosmis, Adjoint error estimation and adaptive refinement for embedded-boundary Cartesian meshes, in 18th AIAA Computational Fluid Dynamics Conference (2007), p. 4187

    Google Scholar 

  39. R.H. Nochetto, A. Veeser, M. Verani, A safeguarded dual weighted residual method. IMA J. Numer. Anal. 29(1), 126–140 (2009)

    Article  MathSciNet  Google Scholar 

  40. A. Özcan, S. Kollmannsberger, J. Jomo, E. Rank, Residual stresses in metal deposition modeling: discretizations of higher order. Comput. Math. Appl. 78(7), 2247–2266 (2019)

    Article  MathSciNet  Google Scholar 

  41. J. Parvizian, A. Düster, E. Rank, Finite cell method. Comput. Mech. 41(1), 121–133 (2007)

    Article  MathSciNet  Google Scholar 

  42. A. Rademacher, Adaptive finite element methods for nonlinear hyperbolic problems of second order. Ph.D. thesis, TU Dortmund (2010)

    Google Scholar 

  43. R. Rannacher, J. Vihharev, Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. J. Numer. Math. 21(1), 23–62 (2013)

    Article  MathSciNet  Google Scholar 

  44. T. Richter, T. Wick, Variational localizations of the dual weighted residual estimator. J. Comput. Appl. Math. 279, 192–208 (2015)

    Article  MathSciNet  Google Scholar 

  45. M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, E. Rank, The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11(3), 425–437 (2012)

    Article  Google Scholar 

  46. V. Saul’ev, On the solution of some boundary value problems on high performance computers by fictitious domain method. Sib. Math. J 4(4), 912–925 (1963)

    Google Scholar 

  47. D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, E. Rank, Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput. Mech. 50(4), 445–478 (2012). https://doi.org/10.1007/s00466-012-0684-z

    Article  MathSciNet  MATH  Google Scholar 

  48. L.L. Schumaker, L. Wang, Spline spaces on TR-meshes with hanging vertices. Numerische Mathematik 118(3), 531–548 (2011)

    Article  MathSciNet  Google Scholar 

  49. C. Schwab, p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (Oxford University Press, 1998)

    Google Scholar 

  50. E.M. Stein, Singular integrals and differentiability properties of functions, vol. 2 (Princeton University Press, 1970)

    Google Scholar 

  51. H. Sun, D. Schillinger, S. Yuan, Implicit a posteriori error estimation in cut finite elements. Comput. Mech. pp. 1–22 (2019)

    Google Scholar 

  52. B. Szabó, A. Düster, E. Rank, The p-version of the finite element method, in Encyclopedia of Computational Mechanics (2004)

    Google Scholar 

  53. A. Taghipour, J. Parvizian, S. Heinze, A. Düster, The finite cell method for nearly incompressible finite strain plasticity problems with complex geometries. Comput. Math. Appl. 75, 3298–3316 (2018)

    Article  MathSciNet  Google Scholar 

  54. F.G. Tricomi, Vorlesungen über Orthogonalreihen (Springer, 1955)

    Google Scholar 

  55. C. Verhoosel, G. van Zwieten, B. van Rietbergen, R. de Borst, Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput. Methods Appl. Mech. Eng. 284, 138–164 (2015)

    Article  MathSciNet  Google Scholar 

  56. M. Yvinec, 2D triangulation, in CGAL User and Reference Manual, 4.14 edn. (CGAL Editorial Board, 2019). https://doc.cgal.org/4.14/Manual/packages.html#PkgTriangulation2

  57. N. Zander, S. Kollmannsberger, M. Ruess, Z. Yosibash, E. Rank, The finite cell method for linear thermoelasticity. Comput. Math. Appl. 64(11), 3527–3541 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHR 1244/4-2 – SPP 1748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Stolfo, P., Schröder, A. (2022). Error Control and Adaptivity for the Finite Cell Method. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics