Skip to main content

Selective Sulfidation for Rare Earth Element Separation

  • Conference paper
  • First Online:
Rare Metal Technology 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Rare earth metals and compounds are critical components of advanced materials for energy, structural alloys, and transportation. These low-tonnage elements are sourced together as by- and co-products, and presently require complete hydrometallurgical dissolution followed by liquid–liquid separation for their isolation and production. There is great interest in developing alternatives to those hydrometallurgical processes in order to limit the environmental impact of rare earth element supply. Herein, we present selective sulfidation as a novel, high-temperature alternative to facilitate physical separation of rare earth by- and co-product elements. We explore the thermodynamics of rare earth oxide sulfidation with elemental sulfur, and discuss the role of carbon in controlling sulfidation selectivity. We apply these findings to the demonstration of selective sulfidation for iron-rare earth and lanthanide-lanthanide separations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheisson T, Schelter EJ (2019) Rare earth elements: Mendeleev’s bane, modern marvels. Science 363(6426):489–493. https://doi.org/10.1126/science.aau7628

  2. Zhao B, Zhang J, Schreiner B (2016) Separation hydrometallurgy of rare earth elements. Springer International Publishing AG Switzerland, Cham

    Google Scholar 

  3. Haynes WM (2016) Abundance of elements in the earth’s crust and in the sea. In CRC Handb Chem Phys, 97th edn (2016), pp 14–17

    Google Scholar 

  4. U.S. Geological Survey (2021) Mineral commodity summaries 2021

    Google Scholar 

  5. U.S. Department of Energy (2020) Critical minerals and materials

    Google Scholar 

  6. Binnemans K, Jones PT, Müller T, Yurramendi L (2018) Rare earths and the balance problem: How to deal with changing markets? J Sustain Metall 4(1):126–146. https://doi.org/10.1007/s40831-018-0162-8

  7. Jowitt SM, Werner TT, Weng Z, Mudd GM (2018) Recycling of the rare earth elements. Curr Opin Green Sustain Chem 13:1–7. https://doi.org/10.1016/J.COGSC.2018.02.008

  8. Bailey G, Joyce PJ, Schrijvers D, Schulze R, Sylvestre AM, Sprecher B, Vahidi E, Dewulf W, Van Acker K (2020) Review and new life cycle assessment for rare earth production from bastnäsite, ion adsorption clays and lateritic monazite. Resour Conserv Recycl 155:104675. https://doi.org/10.1016/j.resconrec.2019.104675

  9. Kim J, Azimi G (2020) An innovative process for extracting scandium from nickeliferous laterite ore: Carbothermic reduction followed by NaOH cracking. Hydrometallurgy 191:105194. https://doi.org/10.1016/j.hydromet.2019.105194

  10. Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy 108(1–2):100–108. https://doi.org/10.1016/j.hydromet.2011.03.001

  11. Anawati J, Yuan R, Kim J, Azimi G (2020) Selective recovery of scandium from nickel laterite ore by acid roasting–water leaching. Miner Met Mater Ser 77–90 (Springer)

    Google Scholar 

  12. Meng F, Li X, Shi L, Li Y, Gao F, Wei Y (2020) Miner Eng 157:106561. https://doi.org/10.1016/j.mineng.2020.106561

  13. Borra CR, Mermans J, Blanpain B, Pontikes Y, Binnemans K, Van Gerven T (2016) Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Miner Eng 92:151–159. https://doi.org/10.1016/j.mineng.2016.03.002

  14. Narayanan RP, Kazantzis NK, Emmert MH (2018) Selective process steps for the recovery of scandium from jamaican bauxite residue (Red Mud). ACS Sustain Chem Eng 6:1478–1488. https://doi.org/10.1021/acssuschemeng.7b03968

  15. Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Miner Eng 41:97–114. https://doi.org/10.1016/j.mineng.2012.10.017

  16. Kumari A, Panda R, Jha MK, Kumar JR, Lee JY (2015) Process development to recover rare earth metals from monazite mineral: A review. Miner Eng 79(August):102–115. https://doi.org/10.1016/j.mineng.2015.05.003

  17. Vogel H, Friedrich B (2018) An estimation of PFC emission by rare earth electrolysis. Light Met. Springer, Berlin, Heidelberg, pp 1507–1517

    Google Scholar 

  18. Lee JCK, Wen Z (2018) Pathways for greening the supply of rare earth elements in China. Nat Sustain 1:598–605. https://doi.org/10.1038/s41893-018-0154-5

  19. Vahidi E, Zhao F (2017) Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. J Environ Manage 203:255–263. https://doi.org/10.1016/j.jenvman.2017.07.076

  20. Hall LCON, Kelley S (2015) Yangibana Project

    Google Scholar 

  21. Ciuculescu T, Foo B, Gowans R, Hawton K, Jacobs C, Spooner J (2013) Nechalacho rare earth elements project

    Google Scholar 

  22. Limited NM (2014) Browns range project

    Google Scholar 

  23. Limited PR (2012) Nguallar rare earth project. Q Rep

    Google Scholar 

  24. Li XZ, Zhou LP, Yan LL, Dong YM, Bai ZL, Sun XQ, Diwu J, Wang S, Bünzli JC, Sun QF (2018) A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. Nat Commun 9:547. https://doi.org/10.1038/s41467-018-02940-7

  25. Higgins RF, Cheisson T, Cole BE, Manor BC, Carroll PJ, Schelter EJ (2020) Magnetic field directed rare‐earth separations. Angew Chemie Int Ed 59(5):1851–1856. https://doi.org/10.1002/anie.201911606

  26. Norgate T, Jahanshahi S (2010) Low grade ores–Smelt, leach or concentrate? Miner Eng 23(2):65–73. https://doi.org/10.1016/j.mineng.2009.10.002

  27. Skinner BJ (1976) A second iron age ahead? The distribution of chemical elements in the earth’s crust sets natural limits to man’s supply of metals that are much more important to the future of society than limits on energy. Sci Am 64(3):258–269

    Google Scholar 

  28. Skinner BJ (1979) Earth resources (minerals/metals/ores/geochemistry/mining). Proc Natl Acad Sci USA 76(9):4212–4217

    Google Scholar 

  29. Murase K, Shinozaki K, Hirashima Y, ichi Machida K, ya Adachi G (1993) Rare earth separation using a chemical vapour transport process mediated by vapour complexes of the LnCl3AlCl3 system. J Alloys Compd 198(1–2):31–38. https://doi.org/10.1016/0925-8388(93)90139-E

  30. Uda T, Jacob KT, Hirasawa M (2000) Technique for enhanced rare earth separation. Science 289(5488):2326–2329. https://doi.org/10.1126/science.289.5488.2326

  31. Elgin JC (2019) Scandium solvent extraction. Light Met 2019:1395–1401. https://doi.org/10.1021/ie50481a018

  32. Andrade-Gamboa J, Andrade-Gamboa J, Pasquevich DM (2000) A model for the role of carbon on carbochlorination of TiO2. Metall Mater Trans B Process Metall Mater Process Sci 31(6):1439–1446. https://doi.org/10.1007/s11663-000-0028-9

  33. Onghena B, Borra CR, Van Gerven T, Binnemans K (2017) Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis (trifluoromethylsulfonyl) imid. Sep Purif Technol 176:208–219. https://doi.org/10.1016/j.seppur.2016.12.009

  34. Wang J, Hu H (2021) Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by sulfation. Miner Eng 160 (November 2020):106711. https://doi.org/10.1016/j.mineng.2020.106711

  35. Anawati J, Yuan R, Kim J, Azimi G (2020) Selective recovery of scandium from Nickel Laterite ore by acid roasting–water leaching. Springer International Publishing

    Google Scholar 

  36. Yin X, Wang Y, Bai X, Wang Y, Chen L, Xiao C, Diwu J, Du S, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Rare earth separations by selective borate crystallization. Nat Commun 8. https://doi.org/10.1038/ncomms14438

  37. Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, McGregor K (2016) Review of high-temperature recovery of rare earth (Nd/Dy) from magnet waste. J Sustain Metall 2(4):276–295. https://doi.org/10.1007/s40831-016-0045-9

  38. Stinn C, Allanore A (2021) Selective sulfidation of metal compounds. Nature 2021:1–9. https://doi.org/10.1038/s41586-021-04321-5

  39. Bakhtiyarov IB (1987) Preparation of Eu2S3 and investigation of the system Eu2S3-Eu2O3. Azerbaidzhanskii Khimicheskii Zhurnal 4(156–160)

    Google Scholar 

  40. Asadov MM, Abbasov MM (1996) Phase diagrams of the Ho2O3-In2S3, Ho2O3-HO2S3 and Ho2O2S-In2S3 systems. Inorg Mater 32:280–283

    Google Scholar 

  41. Stewart VJ, Chamorro JR, McQueen TM (2021) Integer vs. half-integer spin on an approximate honeycomb lattice. Phys Rev Mater 5(094401):1–7. https://doi.org/10.1103/PhysRevMaterials.5.094401

  42. Harris CT, Peacey JG, Pickles CA (2013) Selective sulphidation and flotation of nickel from a nickeliferous laterite ore. Miner Eng 54:21–31

    Google Scholar 

  43. Stinn C, Allanore A (2021) Selective sulfidation and electrowinning of nickel and cobalt for lithium ion battery recycling. In: C Andersoneditor (ed) Ni-Co 2021: The 5th international symposium on nickel and cobalt. Springer Nature Switzerland AG, Cham, pp 99–110

    Google Scholar 

  44. Han J, Liu W, Wang D, Jiao F, Qin W (2016) Metall Mater Trans B Process Metall Mater Process Sci 47:344

    Google Scholar 

  45. Han J, Liu W, Wang D, Jiao F, Qin W (2015) Selective sulfidation of lead smelter slag with sulfur. Metall Mater Trans B Process Metall Mater Process Sci 47(1):344–354. https://doi.org/10.1007/s11663-015-0526-4

  46. Adham K, Lee C (2012) Fluid bed roasting of metal ores and concentrates for arsenic removal. Towar Clean Metall Process Procfit Soc Environ Steward, pp 109–116

    Google Scholar 

  47. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (2011) Extractive metallurgy of nickel, cobalt, and platinum-group metals. Elsevier, Oxford

    Google Scholar 

  48. Merritt RR (1990) High temperature methods for processing monazite: II. Reaction with sodium carbonate. J Less Common Met 166:211–219

    Google Scholar 

  49. Kaneko T, Yashima Y, Ahmadi E, Natsui S, Suzuki RO (2020) Synthesis of Sc sulfides by CS2 sulfurization. J Solid State Chem 285:121268. https://doi.org/10.1016/j.jssc.2020.121268

  50. Afanasiev P, Fischer L, Beauchesne F, Danot M, Gaborit V, Breysse M (2000) Preparation of the mixed sulfide Nb2Mo3S10 catalyst from the mixed oxide precursor. Catal Lett 64(1):59–63. https://doi.org/10.1023/A:1019058113931

  51. Meyer B (1976) Elemental sulfur. Chem Rev 76:367–388. https://doi.org/10.1021/cr60301a003

  52. Chakraborti N (1983) Modified predominance area diagrams for the Fe‐S‐O system. Can J Chem Eng 61(5):763–765. https://doi.org/10.1002/cjce.5450610520

  53. Dwivedi RK, Kay DAR (1984) Thermodynamics of the oxidation of rare earth oxysulfides at high temperatures. Metall Trans B 15(3):523–528. https://doi.org/10.1007/BF02657383

  54. Kellogg HH (1964) A critical review of sulfation equilibria. Trans Metall Soc AIME 230:1622–1634

    Google Scholar 

  55. Pourbaix MJN, Rorive-Bouté MCM (1948) Graphical study of metallurgical equilibria. Discuss Faraday Soc 4(0):139–154. https://doi.org/10.1039/DF9480400139

  56. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc (0):655–673. https://doi.org/10.1039/JR9370000655

  57. Kriklya AI, Bolgar AS, Pribyl’skii NY (1992) Heat capacity and enthalpy of y-Dy2S3 over a wide range of temperature. Sov Powder Metall Met Ceram 31:697–700

    Google Scholar 

  58. Kuznetsov AK, Tikhonov PA, Kravchinskaya MV, Iuneev VM, Ivanov LM (1976) Phase relations in the systems DyO1.5-PrO1.5 and DyO1.5-PrOx. Dokl Akad Nauk SSSR 231:882–884

    Google Scholar 

  59. Tichonov PA, Proks I, Kosa L (1982) Determination of the mixing enthalpy of solid solutions in the system Y2O3–Nd2O3. Silikaty 26:165–168

    Google Scholar 

  60. Chen M, Hallstedt B, Gauckler LJ (2005) CALPHAD modeling of the La2O3-Y2O3 system. Calphad Comput Coupling Phase Diagrams Thermochem 29(2):103–113. https://doi.org/10.1016/j.calphad.2005.06.006

  61. Ahmadi E, Suzuki RO (2021) Tantalum metal production through high-efficiency electrochemical reduction of TaS2 in molten CaCl2. J Sustain Metall 72(7):437–447. https://doi.org/10.1007/S40831-021-00347-1

  62. Sohn HY, Szekely J (1974) The effect of intragrain diffusion on the reaction between a porous solid and a gas. Chem Eng Sci 29(2):630–634. https://doi.org/10.1016/0009-2509(74)80076-X

  63. Sohn HY, Szekely J (1972) A structural model for gas-solid reactions with a moving boundary—III. Chem Eng Sci 27(4):763–778. https://doi.org/10.1016/0009-2509(72)85011-5

  64. Sohn HY, Fan D-Q (2017) On the initial rate of fluid-solid reactions. Met Mater Trans B 48B (June 2017):1827–1832. https://doi.org/10.1007/s11663-017-0940-x

  65. Rötzer N, Schmidt M (2018) Decreasing metal ore grades—is the fear of resource depletion justified? Resources 7(4):88. https://doi.org/10.3390/RESOURCES7040088

  66. Calvo G, Mudd G, Valero A, Valero A (2016) Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 5(4):36. https://doi.org/10.3390/RESOURCES5040036

Download references

Acknowledgements

The authors thank Dr. Hirotaka Higuchi for providing samples of scandium oxide. Part of this work was funded from the DOE-AMO-EERE Office under project DE-EE0008316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Allanore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stinn, C., Allanore, A. (2022). Selective Sulfidation for Rare Earth Element Separation. In: Ouchi, T., et al. Rare Metal Technology 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92662-5_25

Download citation

Publish with us

Policies and ethics