Skip to main content

Transfer Knowledge Between Cities by Incremental Few-Shot Learning

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

The objective of cross-city transfer learning methods focuses on how to effectively transfer knowledge from data-rich cities to help data-scarce cities, and solve the problem that city development levels are quite unbalanced. However, transfer-learning and meta-learning-based spatial-temporal approaches can quickly learn and adapt to (novel-) source cities, but the prior experience in base-source cities will be largely forgotten, i.e., the models may lead to catastrophic forgetting problem on base attributes. In this paper, we proposed an incremental few-shot learning based spatial-temporal model (IFS-STP), which utilized an incremental few-shot learner strives to build a generalized model that can not only transfer learned knowledge from source cities to improve the performance of spatial-temporal prediction in a target city with limited data but also prevent the catastrophic forgetting problem of source cities. We evaluate IFS-STP on traffic prediction tasks and the experience results show that our approach significantly outperforms competitive baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y., Zhao, K., Cong, G.: Efficient similar region search with deep metric learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1850–1859 (2018)

    Google Scholar 

  2. Wei, H., Zheng, G., Yao, H., Li, Z.: Intellilight: A reinforcement learning approach for intelligent traffic light control. In: The 24th ACM SIGKDD, pp. 2496–2505 (2018)

    Google Scholar 

  3. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Trans. Syst. 14(2), 871–882 (2013)

    Article  Google Scholar 

  4. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi–passenger demand using streaming data. IEEE Trans. Intell. Trans. Syst. 14(3), 1393–1402 (2013)

    Article  Google Scholar 

  5. Zheng, J., Ni, L.M.: Time-dependent trajectory regression on road networks via multi-task learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, 27(1), (2013)

    Google Scholar 

  6. Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD, pp. 965–973 (2018)

    Google Scholar 

  7. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction, In: AAAI, vol. 32(1), pp. 2588–2595 (2018)

    Google Scholar 

  8. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI Conference, vol. 31(1), pp. 1655–1661 (2017)

    Google Scholar 

  9. Yao, H., Liu, Y., Wei, Y., Tang, X., Li, Z.: Learning from multiple cities: a meta-learning approach for spatial-temporal prediction. In: WWW Conference, pp. 2181–2191 (2019)

    Google Scholar 

  10. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22(2), 199–210 (2011)

    Article  Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135 (2017)

    Google Scholar 

  12. Goodfellow, I.J., Mirza, M., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. Stat. 6, 1050 (2014)

    Google Scholar 

  13. Wang, L., Geng, X., Ma, X., Liu, F., Yang, Q.: Cross-city transfer learning for deep spatio-temporal prediction. In: Proceedings of the 28th IJCAI, pp. 1893–1899 (2019)

    Google Scholar 

  14. Wang, H., Yao, H., Kifer, D., Graif, C., Li, Z.: Non-Stationary model for crime rate inference using modern urban data. IEEE Trans, Big Data 5(2), 180–194 (2017)

    Article  Google Scholar 

  15. Fei, W., Wang, H., Li, Z.: Interpreting traffic dynamics using ubiquitous urban data. In: Proceedings of the 24th ACM SIGSPATIAL, pp.1–4 (2016)

    Google Scholar 

  16. Tong, Y., Chen, Y., Zhou, Z., Lei, C., Lv, W.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: ACM SIGKDD, pp. 1653–1662 (2017)

    Google Scholar 

  17. Rose, Y., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach for extreme condition traffic forecasting. In: Chawla, N., Wang, W. (eds.) Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. Society for industrial and applied mathematics, Philadelphia, PA (2017). https://doi.org/10.1137/1.9781611974973.87

    Chapter  Google Scholar 

  18. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. In: Proceedings of the AAAI, 32 (1) (2018)

    Google Scholar 

  19. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2019)

    Google Scholar 

  20. Jiang, W., Huang, K., Geng, J., Deng, X.: Multi-Scale metric learning for few-shot learning. IEEE Trans, Circuits Syst. Video Technol. 31(3), 1091–1102 (2021)

    Google Scholar 

  21. Ren, M., Liao, R., Fetaya, E., Zemel, R.: Incremental few-shot learning with attention attractor networks. Adv. NeurIPS 32, 5275–5285 (2019)

    Google Scholar 

  22. Wei, Y., Zheng, Y., Yang, Q.: Transfer knowledge between cities. In: Proceedings of the 22nd ACM SIGKDD, pp. 1905–1914 (2016)

    Google Scholar 

  23. Yao, H., Tang, X., Wei, H., Zheng, G.: mRevisiting spatial-temporal similarity: a deep learning framework for traffic prediction, In: The 33rd AAAI Conference, pp. 5668–5675 (2019)

    Google Scholar 

  24. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS, pp. 802–810 (2015)

    Google Scholar 

  25. Yoon, S.W., Kim, D.Y., Seo, J., Moon, J.: Xtarnet: Learning to extract task-adaptive representation for incremental few-shot learning. In: ICML, pp. 10852–10860 (2020)

    Google Scholar 

  26. Xiang, L., Jin, X., Ding, G., Han, J., Li, L.: Incremental few-shot learning for pedestrian attribute recognition, In Proceedings of the 28th IJCAI 2019, pp. 3912–3918 (2019)

    Google Scholar 

  27. LIU, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Learning to Propagate for Graph Meta-Learning. In: Advances in Neural Information Processing Systems, 32, 1039–1050 (2019)

    Google Scholar 

  28. Liao, R., et al.: Reviving and improving recurrent back-propagation. In Proceedings of the 35th ICML 2018, Stockholmsmassan, Stockholm, Sweden, pp. 3088–3097 (2018)

    Google Scholar 

  29. Pineda, F.J.: Generalization of back propagation to recurrent and higher order neural networks. In: Anderson, D.Z., (ed.) Neural Information Processing Systems, Denver, Colorado, USA, American Institue of Physics, pp. 602–611 (1987)

    Google Scholar 

  30. Hyndman, R.J., Athanasopoulos, G. Forecasting: principles and practice. OTexts (2018)

    Google Scholar 

  31. Wang, L., Geng, X., Ma, X., Liu, F., Yang, Q.: Crowd flow prediction by deep spatio-temporal transfer learning. arXiv preprint arXiv:1802.00386 (2018)

  32. Williams, R.J., Peng, J.: An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Comput. 2(4), 490–501 (1990)

    Article  Google Scholar 

  33. Sprechmann, P., Jayakumar, S.M., Rae, J.W., Pritzel.: Memory-based parameter adaptation. In: The 6th International Conference on Learning Representations, ICLR (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by UESTC-ZHIXIAOJING Joint Research Center of Smart Home (No. H04W210180), Neijiang technology incubation and transformation Funds (No. 2021KJFH004).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Li, W., Qi, X., Ren, Y. (2021). Transfer Knowledge Between Cities by Incremental Few-Shot Learning. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-92638-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92638-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92637-3

  • Online ISBN: 978-3-030-92638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics