Skip to main content

Adaptive Tempering in High-Pressure Die Casting Through Prediction Functions

  • Conference paper
  • First Online:
Light Metals 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3002 Accesses

Abstract

Digitisation and cross-linking in high-pressure die casting technology (HPDC) have developed greatly over the past few years. In modern HPDC cells, almost all parameters are recorded and evaluated with the aim of achieving optimum casting production in terms of quality, cycle time, and energy efficiency. However, the focus of this process data analysis and recording is particularly on the HPDC system itself and less on the periphery. This leads to possible interactions remaining undetected and avoidable casting defects continuing to occur. Therefore, the so-called tempering process, which is gaining more and more importance due to the shift towards minimum quantity spraying, is investigated in this research work. In particular, the process parameters of all tempering circuits, which change over time, are analysed with machine learning, and linked with quality-relevant machine key performance data of the HPDC machine. The resulting prediction functions generate process control options to holistically optimise casting production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermann C, Pries H, Hartmann G (2013), Energie- und ressourceneffiziente Produktion von Aluminiumdruckguss, Springer-Verlag Berlin Heidelberg

    Google Scholar 

  2. Ostermann F (2014), Anwendungstechnologie Aluminium, Springer-Verlag Berlin Heidelberg

    Google Scholar 

  3. Wilhelm C, Kallien LH (2018), Die deutsche Automobilindustrie als Teil des globalen Fahrzeugmarktes, Giesserei 105, Nr. 07, S. 48–55

    Google Scholar 

  4. Nogowizin B (2011), Theorie und Praxis des Druckgusses, Fachverlag Schiele & Schön GmbH, Berlin

    Google Scholar 

  5. Wissenschaftliche Gesellschaft für Produktionstechnik e.V. (2016), WGP-Standpunkt Industrie 4.0, Darmstadt

    Google Scholar 

  6. Lenz J, Wuest T, Westkämper E (2018), Holistic approach to machine tool data analytics, Journal of Manufacturing Systems, 48, S. 180–191

    Google Scholar 

  7. Chen Y (2017), Integrated and Intelligent Manufactering; Perspectives and Enablers, Engineering; 3, S. 588–595

    Google Scholar 

  8. Zaki MJ, Wagner M (2020), Data Mining and Machine Learning: Fundamental Concepts and Algorithms, Cambridge University Press

    Google Scholar 

  9. Hastie T, Tibshirani R, Friedman J (2009), The elements of statistical learning: Data Mining, Inference, and Prediction, Springer, New York

    Google Scholar 

  10. Bishop CM (2006), Pattern Recognition and Machine Learning. Springer-Verlag, New York

    Google Scholar 

  11. Witten IH, Frank E, Hall MA (2011), Data Mining Practical Machine Learning Tools and Techniques, Elsevier Inc., Amsterdam

    Google Scholar 

  12. Breiman L (2001), Random Forests, Machine Learning, 45, S. 5.32

    Google Scholar 

  13. Principe JC, Euliano NR, Lefebvre WC (1999), Neural and Adaptive Systems: Fundamentals through Simulations, John Wiley & Sons, Inc., New York

    Google Scholar 

  14. Ertel W (2016), Grundkurs Künstliche Intelligenz, Springer Fachmedien, Wiesbaden

    Google Scholar 

  15. Bankhofer U, Vogel J (2008), Datenanalyse und Statistik, GWV Fachverlage GmbH, Wiesbaden

    Google Scholar 

  16. James G, Witten D, Hastie T, Tibshirani R (2013). An introduction to statistical learning. Springer, New York

    Google Scholar 

  17. Kruse A (2000), Antragsprüfung und Kartenüberwachung von privaten Kreditkartenkunden mit künstlichen Neuronalen Netzen, Schriftenreihe innovative betriebswirtschaftliche Forschung und Praxis, Band 110, Hamburg

    Google Scholar 

  18. Crone SF (2010), Neuronale Netze zur Prognose und Disposition im Handel, Dissertation, Ph.D. Thesis, University Hamburg

    Google Scholar 

  19. Wiedmann K-P, Buchler F (2003), Neuronale Netze im Marketing-Management, Praxisorientierte Einführung in modernes Data-Mining, Springer Fachmedien Wiesbaden, Wiesbaden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Disselhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Disselhoff, T., Tewes, S., Biehl, S. (2022). Adaptive Tempering in High-Pressure Die Casting Through Prediction Functions. In: Eskin, D. (eds) Light Metals 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92529-1_100

Download citation

Publish with us

Policies and ethics