Skip to main content

The Medial Prefrontal Cortex (mPFC) and Addictions

A New Narrative

  • Reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions

Abstract

Although currently we now possess much information on how the prefrontal cortex (PFC) integrates and processes incoming information, we do not have the exact mechanisms and connections underlying its proper functioning yet. The main clue to solve this puzzle may come from its incoming connections, for example, those arising from the dorsal raphe nucleus (DRN) and the ventral tegmental area (VTA). These two areas are extensively related to the reward system, and its innervation of the PFC probably modulates decision-making, mood modulation, and addiction (Russo and Nestler 2013). Taking this into account, we postulate that PFC undergoes a critical period when these inputs compete for target innervation. By the end of this critical period, the incoming connection weight from VTA and DRN establishes a certain PFC configuration that later in life can make this region more resilient or vulnerable to addiction and neuropsychiatric disorders. Furthermore, we hypothesize that drug abuse during this critical period may also modify these inputs and, therefore, its resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand A et al (2005) Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 57(10):1079–1088

    Article  PubMed  Google Scholar 

  • Arruda-Carvalho M et al (2017) Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci Off J Soc Neurosci 37(11):2976–2985

    Article  CAS  Google Scholar 

  • Barker GRI et al (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27(11):2948–2957. https://doi.org/10.1523/jneurosci.5289-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuter A (1994) Exploring the role of the basal ganglia in motor control using experimental results and mathematical modeling. Adv Behav Biol:533–538. https://doi.org/10.1007/978-1-4613-0485-2_55

  • Bhanji JP, Delgado MR (2014) The social brain and reward: social information processing in the human striatum. WIREs Cogn Sci 5(1):61–73. https://doi.org/10.1002/wcs.1266

    Article  Google Scholar 

  • Bosier B et al (2012) Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo. Neuropharmacology 62(7):2328–2336

    Article  CAS  PubMed  Google Scholar 

  • Bredy TW et al (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14(4):268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron AA et al (1995) The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J Comp Neurol 351(4):585–601. https://doi.org/10.1002/cne.903510408

    Article  CAS  PubMed  Google Scholar 

  • Campbell S et al (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161(4):598–607

    Article  PubMed  Google Scholar 

  • Carreno FR et al (2016) Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry 21(9):1298–1308

    Article  CAS  PubMed  Google Scholar 

  • Carulli D, Verhaagen J (2021) An extracellular perspective on CNS maturation: perineuronal nets and the control of plasticity. Int J Mol Sci 22(5):2434. https://doi.org/10.3390/ijms22052434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casarotto PC et al (2021) Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184(5):1299–1313.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challis C, Berton O (2015) Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional function in depression. ACS Chem Neurosci 6(7):1040–1054

    Article  CAS  PubMed  Google Scholar 

  • Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen F et al (2018) Increased Inhibition of the Amygdala by the mPFC may reflect a resilience factor in post-traumatic stress disorder: a resting-state fMRI granger causality analysis. Front Psychiatry/Front Res Found 9:516

    Article  Google Scholar 

  • Chiba AA, Kesner RP, Gibson CJ (1997) Memory for temporal order of new and familiar spatial location sequences: role of the medial prefrontal cortex. Learn Mem 4(4):311–317

    Article  CAS  PubMed  Google Scholar 

  • Commons KG (2016) Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 221(7):3347–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Rodríguez O et al (2016) Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity. Addict Biol 21(3):709–718

    Article  PubMed  Google Scholar 

  • Cortright JJ et al (2011) Previous exposure to Δ9-Tetrahydrocannibinol enhances locomotor responding to but not self-administration of amphetamine. J Pharmacol Exp Ther 337(3):724–733. https://doi.org/10.1124/jpet.111.180208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Kakade S, Montague PR (2000) Learning and selective attention. Nat Neurosci 3(Suppl):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro NC et al (2004) Complementary tasks to measure working memory in distinct prefrontal cortex subregions in rats. Behav Neurosci 118(5):1042–1051

    Article  PubMed  Google Scholar 

  • Dityatev A et al (2007) Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol 67(5):570–588

    Article  CAS  PubMed  Google Scholar 

  • Duman RS (2018) Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000Research, 7. https://doi.org/10.12688/f1000research.14344.1

  • Endepols H et al (2010) Effort-based decision making in the rat: an [18F]fluorodeoxyglucose micro positron emission tomography study. J Neurosci Off J Soc Neurosci 30(29):9708–9714

    Article  CAS  Google Scholar 

  • Evarts EV, Wise SP (2008) ‘Basal Ganglia outputs and motor control’. Ciba Foundation Symposium 107 – Functions of the Basal Ganglia, pp. 83–113. https://doi.org/10.1002/9780470720882.ch6.

  • Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PLA et al (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177

    Article  PubMed  Google Scholar 

  • Garcia-Mompo C et al (2020) Δ-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Transl Psychiatry 10(1):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geddes SD et al (2016) Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids. Proc Natl Acad Sci U S A 113(19):5429–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490(3):270–294

    Article  PubMed  Google Scholar 

  • Gervain J et al (2013) Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci 7:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogolla N et al (2009) Perineuronal nets protect fear memories from erasure. Science 325(5945):1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci Off J Soc Neurosci 16(10):3274–3286

    Article  CAS  Google Scholar 

  • Graybiel AM, Grafton ST (2015) The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol 7(8):a021691

    Article  PubMed  PubMed Central  Google Scholar 

  • Guirado R, Castrén E (2018) Pharmacological manipulation of critical period plasticity. In: Chao MV (ed) The Oxford Handbook of Developmental Neural Plasticity. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190635374.013.10

    Chapter  Google Scholar 

  • Guirado R et al (2014) Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons. Int J Neuropsychoph 17(10):1635–1646

    Article  CAS  Google Scholar 

  • Guirado R, La Terra D et al (2016a) Effects of PSA removal from NCAM on the critical period plasticity triggered by the antidepressant fluoxetine in the visual cortex. Front Cell Neurosci 10:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Guirado R, Umemori J et al (2016b) Evidence for competition for target innervation in the medial prefrontal cortex. Cereb Cortex 26(3):1287–1294

    Article  PubMed  Google Scholar 

  • Hagberg B (1987) Behaviour correlates to frontal lobe dysfunction. Arch Gerontol Geriatr 6(3):311–321. https://doi.org/10.1016/0167-4943(87)90030-6

    Article  CAS  PubMed  Google Scholar 

  • Hajek T, Kopecek M, Höschl C (2012) Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. World J Biol Psychiatry 13(3):178–187

    Article  PubMed  Google Scholar 

  • Hajszan T, MacLusky NJ, Leranth C (2005) Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 21(5):1299–1303

    Article  PubMed  Google Scholar 

  • Hamilton JP et al (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry 169(7):693–703

    Article  PubMed  Google Scholar 

  • Hariri AR et al (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci Off J Soc Neurosci 23(17):6690–6694

    Article  CAS  Google Scholar 

  • Harrisberger F et al (2015) BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev 55:107–118

    Article  CAS  PubMed  Google Scholar 

  • Hathway GJ, Vega-Avelaira D, Fitzgerald M (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 153(4):775–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He K et al (2015) Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88(3):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27(6):555–579

    Article  PubMed  Google Scholar 

  • Helmstetter FJ, Bellgowan PS (1994) Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav Neurosci 108(5):1005–1009

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6(11):877–888

    Article  CAS  PubMed  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179

    Article  PubMed  Google Scholar 

  • Hornykiewicz O (2010) A brief history of levodopa. J Neurol 257(Suppl 2):S249–S252

    Article  PubMed  Google Scholar 

  • Horst NK, Laubach M (2009) The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 164(2):444–456

    Article  CAS  PubMed  Google Scholar 

  • Hosang GM et al (2014) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. Compr Psychiatry:e52. https://doi.org/10.1016/j.comppsych.2014.08.022

  • Huang W-C, Chen Y, Page DT (2016) Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse model of macrocephaly/autism syndrome. Nat Commun 15(7):13421. https://doi.org/10.1038/ncomms13421

    Article  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206(2):419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa J et al (2005) Valproic acid potentiates both typical and atypical antipsychotic-induced prefrontal cortical dopamine release. Brain Res 1052(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Iidaka T et al (2019) Thalamocortical hyperconnectivity and Amygdala-cortical hypoconnectivity in male patients with autism spectrum disorder. Front Psychiatry/Front Res Found 10:252

    Article  Google Scholar 

  • Karpova NN et al (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334(6063):1731–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamatsu T, Pettigrew JD, Ary M (1979) Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol 185(1):163–181

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431

    Article  PubMed  Google Scholar 

  • Kjelstrup KB et al (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143

    Article  CAS  PubMed  Google Scholar 

  • Krämer OH et al (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22(13):3411–3420

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucyi A et al (2014) Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci 34(11):3969–3975. https://doi.org/10.1523/jneurosci.5055-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7(1):e30481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanteri C et al (2014) Repeated exposure to MDMA triggers long-term plasticity of noradrenergic and serotonergic neurons. Mol Psychiatry 19(7):823–833

    Article  CAS  PubMed  Google Scholar 

  • Larsen MH et al (2008) Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. Eur J Pharmacol 578(2-3):114–122

    Article  CAS  PubMed  Google Scholar 

  • Lee SLT et al (2019) Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain and behavior 9(10):e01410

    Article  PubMed  PubMed Central  Google Scholar 

  • Leguire LE et al (1993) Levodopa/carbidopa for childhood amblyopia. Invest Ophthalmol Vis Sci 34(11):3090–3095

    CAS  PubMed  Google Scholar 

  • Leguire LE et al (1995) Levodopa/carbidopa treatment for amblyopia in older children. J Pediatr Ophthalmol Strabismus 32(3):143–151

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb V et al (2016) Altered cerebellar-amygdala connectivity in violent offenders: a resting-state fMRI study. Neurosci Lett 610:160–164

    Article  CAS  PubMed  Google Scholar 

  • Lindefors N, Barati S, O’Connor WT (1997) Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain Res 759(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Liu SX et al (2021) Repeated morphine exposure activates synaptogenesis and other neuroplasticity-related gene networks in the dorsomedial prefrontal cortex of male and female rats. Drug Alcohol Depend 221:108598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SQ, Sng JCG, Augustine GJ (2017) Defining a critical period for inhibitory circuits within the somatosensory cortex. Sci Rep 7(1):7271

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorrain DS et al (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117(3):697–706

    Article  CAS  PubMed  Google Scholar 

  • Löscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58(1):31–59

    Article  PubMed  Google Scholar 

  • Maître L, Staehelin M, Bein HJ (1970) Effect of an extract of cannabis and of some cannabinols on catecholamine metabolism in rat brain and heart. Agents Actions 1(3):136–143

    Article  PubMed  Google Scholar 

  • Maya Vetencourt JF et al (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320(5874):385–388

    Article  CAS  PubMed  Google Scholar 

  • McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Mendez N et al (2012) Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One 7(8):e42713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikics É et al (2018) Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit aggression induced by post-weaning social isolation. Neuropsychopharmacology 43(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

    Article  CAS  PubMed  Google Scholar 

  • Milne AMB, MacQueen GM, Hall GBC (2012) Abnormal hippocampal activation in patients with extensive history of major depression: an fMRI study. J Psychiatry Neurosci: JPN 37(1):28–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddam B et al (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci Off J Soc Neurosci 17(8):2921–2927

    Article  CAS  Google Scholar 

  • Mychasiuk R, Gibb R, Kolb B (2012) Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse 66(4):308–314

    Article  CAS  PubMed  Google Scholar 

  • Nabel EM, Morishita H (2013) Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry/Front Res Found 4:146

    Google Scholar 

  • Nardou R et al (2019) Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 569(7754):116–120

    Article  CAS  PubMed  Google Scholar 

  • Narendran R et al (2005) Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 162(12):2352–2359

    Article  PubMed  Google Scholar 

  • Newport EL (1990) Maturational constraints on language learning. Cogn Sci 14(1):11–28. https://doi.org/10.1207/s15516709cog1401_2

    Article  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci Off J Soc Neurosci 15(11):7539–7547

    Article  CAS  Google Scholar 

  • Nowicka D et al (2009) Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci 30(11):2053–2063

    Article  PubMed  Google Scholar 

  • Ogawa SK, Watabe-Uchida M (2018) Organization of dopamine and serotonin system: anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacol Biochem Behav 174:9–22

    Article  CAS  PubMed  Google Scholar 

  • Passetti F, Chudasama Y, Robbins TW (2002) The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb Cortex 12(12):1254–1268

    Article  PubMed  Google Scholar 

  • Pizzorusso T et al (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Pujol J et al (2019) The contribution of brain imaging to the understanding of psychopathy. Psychol Med 49(1):20–31

    Article  PubMed  Google Scholar 

  • Robinson TE et al (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39(3):257–266

    Article  CAS  PubMed  Google Scholar 

  • Romero J et al (1995) Time-course of the effects of anandamide, the putative endogenous cannabinoid receptor ligand, on extrapyramidal function. Brain Res 694(1-2):223–232

    Article  CAS  PubMed  Google Scholar 

  • Rudebeck PH et al (2006) Separate neural pathways process different decision costs. Nat Neurosci 9(9):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14(9):609–625. https://doi.org/10.1038/nrn3381

    Article  CAS  PubMed  Google Scholar 

  • Russo FA, Windell DL, Cuddy LL (2003) Learning the “‘Special Note’”: evidence for a critical period for absolute pitch acquisition. Music Percept 21(1):119–127. https://doi.org/10.1525/mp.2003.21.1.119

    Article  Google Scholar 

  • Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17(3):183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond Ser B Biol Sci 298(1089):199–209

    CAS  Google Scholar 

  • Sheline YI et al (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19(12):5034–5043. https://doi.org/10.1523/jneurosci.19-12-05034.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu E, Hashimoto K, Iyo M (2004) Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am J Med Genet Part B, Neuropsychiatr Genet 126B(1):122–123

    Article  Google Scholar 

  • Silingardi D et al (2010) Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. Eur J Neurosci 31:2185–2192. https://doi.org/10.1111/j.1460-9568.2010.07261.x

    Article  PubMed  Google Scholar 

  • Slaker ML et al (2018) Cocaine exposure modulates perineuronal nets and synaptic excitability of fast-spiking interneurons in the medial prefrontal cortex. eNeuro 5(5). https://doi.org/10.1523/ENEURO.0221-18.2018

  • Soiza-Reilly M et al (2019) SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry 24(5):726–745

    Article  CAS  PubMed  Google Scholar 

  • Soliman F et al (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327(5967):863–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81(2):119–145

    Article  CAS  PubMed  Google Scholar 

  • Sousa N et al (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Spellman TJ, Gordon JA (2015) Synchrony in schizophrenia: a window into circuit-level pathophysiology. Curr Opin Neurobiol 30:17–23

    Article  CAS  PubMed  Google Scholar 

  • Sun Z et al (2019) Behavioral changes and neuronal damage in rhesus monkeys after 10 weeks of ketamine administration involve prefrontal cortex Dopamine D2 receptor and dopamine transporter. Neuroscience 415:97–106

    Article  CAS  PubMed  Google Scholar 

  • Trachtenberg JT (2015) Competition, inhibition, and critical periods of cortical plasticity. Curr Opin Neurobiol 35:44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Loos H, Woolsey TA (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179(4071):395–398

    Article  PubMed  Google Scholar 

  • Vathy I (1995) Effects of prenatal morphine and cocaine on postnatal behaviors and brain neurotransmitters. NIDA Res Monogr 158:88–114

    CAS  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Rodriguez JJ (2012) Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry. Neuroscience 219:120–136

    Article  CAS  PubMed  Google Scholar 

  • Videbech P (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatr 161(11):1957–1966. https://doi.org/10.1176/appi.ajp.161.11.1957

    Article  PubMed  Google Scholar 

  • Watabe-Uchida M et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873

    Article  CAS  PubMed  Google Scholar 

  • West EA, Carelli RM (2016) Nucleus Accumbens core and shell differentially encode reward-associated cues after reinforcer devaluation. J Neurosci Off J Soc Neurosci 36(4):1128–1139

    Article  CAS  Google Scholar 

  • Wirt RA, Hyman JM (2017) Integrating spatial working memory and remote memory: interactions between the medial prefrontal cortex and hippocampus. Brain sciences 7(4). https://doi.org/10.3390/brainsci7040043

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10(3-4):317–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Guirado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perez-Rando, M., Guirado, R. (2022). The Medial Prefrontal Cortex (mPFC) and Addictions. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-92392-1_25

Download citation

Publish with us

Policies and ethics