Skip to main content

Drug and MDMA Interactions Implications for Public Health

  • Reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions

Abstract

Public health focused on drug use is considered a balancing act between preventing illicit use of drugs of abuse and ensuring access to drugs/medicines with abuse potential for a medical condition. Whereas clinically relevant drug interactions for medicines are widely recognized and are included in most pharmacovigilance systems, drug interactions with drugs of abuse are mainly underexplored, and their assessment is not part of clinical routine. An excellent example of this paradigm is 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, or molly), one of the most popular recreative psychostimulants, which is being currently evaluated for the treatment of post-traumatic stress disorder. Considering both aspects of MDMA, as a consolidated recreational drug of abuse and a potential medicine, it is crucial to understand which inter- and intraindividual factors, modulation factors, and potential interactions could lead to risk of intoxication in recreational drug users as well as in patients with possible future MDMA-assisted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine (serotonin)

5-HTT:

5-hydroxytryptamine transporter

5-HTTLPR:

5-hydroxytryptamine transporter-linked promoter region

AERS:

Adverse event reporting system

AMRS:

Adjective Mood Rating Scale

ARCI:

Addiction Research Center Inventory

ASC:

Altered States of Consciousness

AUC:

Area under cover

BP:

Blood pressure

CNS:

Central nervous system

COMT:

Catechol-O-methyltransferase

CYP1A2:

Cytochrome P450 1A2

CYP2B6:

Cytochrome P450 2B6

CYP2C19:

Cytochrome P450 2C19

CYP2D6:

Cytochrome P450 2D6

DA:

Dopamine

DBP:

Diastolic blood pressure

EM:

Extensive metabolizer

EMCCDA:

European Monitoring Centre for Drugs and Drug Addiction

FAERS:

FDA Adverse Event Reporting System

FDA:

Food and Drug Administration

GDS:

Global Drug Survey

HHA:

3,4-dihydroxyamphetamine

HHMA:

3,4-dihydroxymethamphetamine

HR:

Heart rate

IM:

Intermediate metabolizer

LSD:

Lysergic acid diethylamide

MAOI:

Monoamine oxidase inhibitor

MAP:

Mean arterial pressure

MAPS:

Multidisciplinary Association for Psychedelic Studies

MBI:

Mechanism-based inhibition

MDA:

3,4-methylenedioxyamphetamine

MDEA:

Methylenedioxyethylamphetamine

MDMA:

3,4-methylenedioxymethamphetamine

mmHg:

Millimeters of mercury

MTF:

Monitoring the Future

NE:

Norepinephrine

NET:

Norepinephrine transporter

NSP:

Novel psychoactive substances

OXTR:

Oxytocin receptor

PD:

Pharmacodynamics

PK:

Pharmacokinetics

PM:

Poor metabolizer

PMA:

Paramethoxyamphetamine

POMS:

Profile of Mood States

PTSD:

Post-traumatic stress disorder

SBP:

Systolic blood pressure

SERT:

Serotonin transporter

SIADH:

Syndrome of inappropriate antidiuretic hormone secretion

SNP:

Single-nucleotide polymorphisms

SSRI:

Selective serotonin reuptake inhibitor

STAI:

State-Trait Anxiety Inventory

T:

Temperature

THC:

Delta-9-tetrahydrocannabinol

UM:

Ultrarapid metabolizer

US:

United States

WHO:

World Health Organization

References

  • Aitchison KJ, Tsapakis EM, Huezo-Diaz P et al (2012) Ecstasy (MDMA)-induced hyponatraemia is associated with genetic variants in CYP2D6 and COMT. J Psychopharmacol 26:408–418

    Article  CAS  PubMed  Google Scholar 

  • Bahji A, Forsyth A, Groll D et al (2020) Efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for posttraumatic stress disorder: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 96:109735

    Article  CAS  Google Scholar 

  • Bershad AK, Weafer JJ, Kirkpatrick MG et al (2016) Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc Neurosci 11:592–599

    Google Scholar 

  • Bershad AK, Mayo LM, Van Hedger K et al (2019) Effects of MDMA on attention to positive social cues and pleasantness of affective touch. Neuropsychopharmacology 44:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen IV, Makunts T, Abagyan R et al (2021) Concomitant drugs associated with increased mortality for MDMA users reported in a drug safety surveillance database. Sci Rep 11:5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuyàs E, Verdejo-García A, Fagundo AB et al (2011) The influence of genetic and environmental factors among MDMA users in cognitive performance. PLoS One 6:e27206

    Article  PubMed  PubMed Central  Google Scholar 

  • Danforth AL, Grob CS, Struble C et al (2018) Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: a randomized, double-blind, placebo-controlled pilot study. Psychopharmacology 235:3137–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Torre R, Farré M, Roset PN et al (2000) Pharmacology of MDMA in humans. Ann N Y Acad Sci 914:225–237

    Article  PubMed  Google Scholar 

  • de la Torre R, Farre M, Roset PN et al (2004) Human pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit 26:137–144

    Google Scholar 

  • de la Torre R, Farré M, Mathúna BO et al (2005) MDMA (ecstasy) pharmacokinetics in a CYP2D6 poor metaboliser and in nine CYP2D6 extensive metabolisers. Eur J Clin Pharmacol 61:551–554

    Article  PubMed  Google Scholar 

  • de Sousa Fernandes Perna EB, Theunissen EL, Kuypers KP et al (2014) Memory and mood during MDMA intoxication, with and without memantine pretreatment. Neuropharmacology 87:198–205

    Article  PubMed  Google Scholar 

  • Dumont GJ, Verkes RJ (2006) A review of acute effects of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Psychopharmacol 20:176–187

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJ, Kramers C, Sweep FC et al (2009) Cannabis coadministration potentiates the effects of “ecstasy” on heart rate and temperature in humans. Clin Pharmacol Ther 86:160–166

    Google Scholar 

  • Dumont GJ, Kramers C, Sweep FC et al (2010) Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. J Psychopharmacol 24:165–174

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJ, van Hasselt JG, de Kam M et al (2011) Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. J Psychopharmacol 25:478–489

    Article  CAS  PubMed  Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2021) European drug report 2021: trends and developments. Available at: https://www.emcdda.europa.eu/system/files/publications/13838/TDAT21001ENN.pdf

  • Fagundo AB, Cuyàs E, Verdejo-Garcia A et al (2010) The influence of 5-HTT and COMT genotypes on verbal fluency in ecstasy users. J Psychopharmacol 24:1381–1393

    Article  CAS  PubMed  Google Scholar 

  • Farré M, de la Torre R, Mathúna BO et al (2004) Repeated doses administration of MDMA in humans: pharmacological effects and pharmacokinetics. Psychopharmacology 173:364–375

    Article  PubMed  Google Scholar 

  • Farré M, Abanades S, Roset PN et al (2007) Pharmacological interaction between 3,4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther 323:954–962

    Article  PubMed  Google Scholar 

  • Farré M, Tomillero A, Pérez-Mañá C et al (2015) Human pharmacology of 3,4-;methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 4 h apart. Eur Neuropsychopharmacol 25:1637–1649

    Google Scholar 

  • Feduccia AA, Jerome L, Mithoefer MC et al (2021) Discontinuation of medications classified as reuptake inhibitors affects treatment response of MDMA-assisted psychotherapy. Psychopharmacology 238:581–588

    Article  CAS  PubMed  Google Scholar 

  • Figurasin R, Maguire NJ (2021) 3,4-methylenedioxy-methamphetamine toxicity. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, p 2021

    Google Scholar 

  • Freudenmann RW, Oxler F, Bernschneider-Reif S (2006) The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents. Addiction 101:1241–1125

    Article  PubMed  Google Scholar 

  • Global Drug Survey (GDS) (2020).Available at: https://www.globaldrugsurvey.com/wp-content/uploads/2021/01/GDS2020-Executive-Summary.pdf

  • Grob C (1998) MDMA research: preliminary investigations with human subjects. Int J Drug Policy 9:119–124

    Article  Google Scholar 

  • Hartman RL, Desrosiers NA, Barnes AJ et al (2014) 3,4-Methylenedioxymethamphetamine (MDMA) and metabolites disposition in blood and plasma following controlled oral administration. Anal Bioanal Chem 406:587–599

    Article  CAS  PubMed  Google Scholar 

  • Hernández-López C, Farré M, Roset PN et al (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 300:236–244

    Article  PubMed  Google Scholar 

  • Hysek CM, Vollenweider FX, Liechti ME (2010) Effects of a beta-blocker on the cardiovascular response to MDMA (Ecstasy). Emerg Med J 27:586–589

    Article  CAS  PubMed  Google Scholar 

  • Hysek CM, Simmler LD, Ineichen M et al (2011) The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther 90:246–255

    Article  CAS  PubMed  Google Scholar 

  • Hysek C, Schmid Y, Rickli A et al (2012a) Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol 166:2277–2288

    Google Scholar 

  • Hysek CM, Brugger R, Simmler LD et al (2012b) Effects of the α2-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 340:286–294

    Google Scholar 

  • Hysek CM, Simmler LD, Nicola VG et al (2012c) Duloxetine inhibits effects of MDMA (“ecstasy”) in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 7:e36476

    Google Scholar 

  • Hysek CM, Fink AE, Simmler LD et al (2013) α1-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 33:658–666

    Article  CAS  PubMed  Google Scholar 

  • Hysek CM, Simmler LD, Schillinger N et al (2014) Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 17:371–381

    Google Scholar 

  • Kirkpatrick MG, Baggott MJ, Mendelson JE et al (2014) MDMA effects consistent across laboratories. Psychopharmacology 231:3899–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbrich EA, Goodwin RS, Gorelick DA et al (2008) Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults. Ther Drug Monit 30:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers KP, Samyn N, Ramaekers JG (2006) MDMA and alcohol effects, combined and alone, on objective and subjective measures of actual driving performance and psychomotor function. Psychopharmacology 187:467–475

    Article  CAS  PubMed  Google Scholar 

  • Kuypers KP, Wingen M, Samyn N et al (2007) Acute effects of nocturnal doses of MDMA on measures of impulsivity and psychomotor performance throughout the night. Psychopharmacology (Berl) 192:111–119

    Google Scholar 

  • Kuypers KP, Wingen M et al (2008) Memory and mood during the night and in the morning after repeated evening doses of MDMA. J Psychopharmacol 22:895–903

    Google Scholar 

  • Kuypers KPC, Dolder PC, Ramaekers JG et al (2017) Multifaceted empathy of healthy volunteers after single doses of MDMA: a pooled sample of placebo-controlled studies. J Psychopharmacol 31:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers KPC, de la Torre R, Farre M et al (2018) Depressive mood ratings are reduced by MDMA in female polydrug ecstasy users homozygous for the l-allele of the serotonin transporter. Sci Rep 8:1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liechti M (2015) Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly 145:w14043

    PubMed  Google Scholar 

  • Liechti ME, Vollenweider FX (2000) The serotonin uptake inhibitor citalopram reduces acute cardiovascular and vegetative effects of 3,4-methylenedioxymethamphetamine (‘Ecstasy’) in healthy volunteers. J Psychopharmacol 14:269–274

    Article  CAS  PubMed  Google Scholar 

  • Liechti ME, Saur MR, Gamma A et al (2000) Psychological and physiological effects of MDMA (“Ecstasy”) after pretreatment with the 5-HT(2) antagonist ketanserin in healthy humans. Neuropsychopharmacology 23:396–404

    Google Scholar 

  • Liechti ME, Gamma A, Vollenweider FX (2001) Gender differences in the subjective effects of MDMA. Psychopharmacology 154:161–168

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JM, Bogenschutz M, Lilienstein A et al (2021) MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat Med 27:1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithoefer MC, Grob CS, Brewerton TD (2016) Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. Lancet Psychiatry 3:481–488

    Article  PubMed  Google Scholar 

  • Mithoefer MC, Feduccia AA, Jerome L et al (2019) MDMA-assisted psychotherapy for treatment of PTSD: study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology 236:2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monitoring the Future (MTF) (2020). Available at: https://www.drugabuse.gov/drug-topics/mdma-ecstasymolly/mdma-ecstasymolly-trends-statistics

  • Multidisciplinary Association for Psychedelic Studies (MAPS). Available at: https://maps.org/research/mdma

  • Noseda R, Schmid Y, Scholz I et al (2021) MDMA-related presentations to the emergency departments of the European Drug Emergencies Network plus (Euro-DEN Plus) over the four-year period 2014–2017. Clin Toxicol (Phila) 59:131–137

    Article  CAS  Google Scholar 

  • Papaseit E, Torrens M, Pérez-Mañá C et al (2018) Key interindividual determinants in MDMA pharmacodynamics. Expert Opin Drug Metab Toxicol 14:183–195

    Article  CAS  PubMed  Google Scholar 

  • Papaseit E, Pérez-Mañá C, Torrens M et al (2020) MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin Drug Metab Toxicol 16:357–369

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Lozano R, Farré M, Yubero-Lahoz S et al (2012) Clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”): the influence of gender and genetics (CYP2D6, COMT, 5-HTT). PLoS One 7:e47599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passie T, Benzenhöfer U (2016) The history of MDMA as an underground drug in the United States, 1960–1979. J Psychoactive Drugs 48:67–75

    Article  PubMed  Google Scholar 

  • Peiró AM, Farré M, Roset PN et al (2013) Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 2 h apart. Psychopharmacology 225:883–893

    Google Scholar 

  • Roiser JP, Cook LJ, Cooper JD et al (2005) Association of a functional polymorphism in the serotonin transporter gene with abnormal emotional processing in ecstasy users. Am J Psychiatry 162:609–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Roiser JP, Rogers RD, Cook LJ et al (2006) The effect of polymorphism at the serotonin transporter gene on decision-making, memory and executive function in ecstasy users and controls. Psychopharmacology 188:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roxburgh A, Sam B, Kriikku P et al (2021) Trends in MDMA-related mortality across four countries. Addiction 116:3094–3103

    Google Scholar 

  • Rucker JJ, Iliff J, Nutt DJ (2018) Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology 142:200–218

    Article  CAS  PubMed  Google Scholar 

  • Schifano F, Oyefeso A, Corkery J et al (2003) Death rates from ecstasy (MDMA, MDA) and polydrug use in England and Wales 1996–2002. Hum Psychopharmacol 18:519–524

    Google Scholar 

  • Schmid Y, Rickli A, Schaffner A et al (2015) Interactions between bupropion and 3,4-methylenedioxymethamphetamine in healthy subjects. J Pharmacol Exp Therm 353:102–111

    Google Scholar 

  • Schmid Y, Vizeli P, Hysek CM et al (2016) CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals. Pharmacogenet Genomics 26:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura M, Farré M, Pichini S et al (2005) Contribution of cytochrome P450 2D6 to 3,4-methylenedioxymethamphetamine disposition in humans: use of paroxetine as a metabolic inhibitor probe. Clin Pharmacokinet 44:649–660

    Article  CAS  PubMed  Google Scholar 

  • Sessa B, Higbed L, Nutt D (2019) A Review of 3,4-methylenedioxymethamphetamine (MDMA)-Assisted Psychotherapy. Front Psych 10:138

    Article  Google Scholar 

  • Sessa B, Higbed L, O'Brien S et al (2021) First study of safety and tolerability of 3,4-methylenedioxymethamphetamine-assisted psychotherapy in patients with alcohol use disorder. J Psychopharmacol (Oxford, UK) 35:375–383

    Article  CAS  Google Scholar 

  • Simmler LD, Liechti ME (2018) Pharmacology of MDMA- and amphetamine-like new psychoactive substances. Handb Exp Pharmacol 252:143–164

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Hysek CM, Liechti ME (2011) Sex differences in the effects of MDMA (ecstasy) on plasma copeptin in healthy subjects. J Clin Endocrinol Metab 96:2844–2850

    Article  CAS  PubMed  Google Scholar 

  • Tancer M, Johanson CE (2007) The effects of fluoxetine on the subjective and physiological effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 189:565–573

    Article  CAS  PubMed  Google Scholar 

  • Tedesco S, Gajaram G, Chida S et al (2021) The efficacy of MDMA (3,4-methylenedioxymethamphetamine) for post-traumatic stress disorder in humans: a systematic review and meta-analysis. Cureus 13:e15070

    Google Scholar 

  • van Wel JH, Kuypers KP, Theunissen EL et al (2012) Effects of acute MDMA intoxication on mood and impulsivity: role of the 5-HT2 and 5-HT1 receptors. PLoS One 7:e40187

    Article  PubMed  PubMed Central  Google Scholar 

  • Verrico CD, Miller GM, Madras BK (2007) MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189:489–503

    Article  CAS  PubMed  Google Scholar 

  • Vizeli P, Liechti ME (2017) Safety pharmacology of acute MDMA administration in healthy subjects. J Psychopharmacol 31:576–588

    Article  CAS  PubMed  Google Scholar 

  • Vizeli P, Liechti ME (2018) Oxytocin receptor gene variations and socio-emotional effects of MDMA: A pooled analysis of controlled studies in healthy subjects. PLoS One 13:e0199384

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizeli P, Schmid Y, Prestin K et al (2017) Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. Eur Neuropsychopharmacol 27:232–238

    Article  CAS  PubMed  Google Scholar 

  • Vizeli P, Meyer Zu Schwabedissen HE, Liechti ME (2018) No major role of norepinephrine transporter gene variations in the cardiostimulant effects of MDMA. Eur J Clin Pharmacol 74:275–283

    Article  CAS  PubMed  Google Scholar 

  • Vizeli P, Meyer Zu Schwabedissen HE, Liechti ME (2019) Role of serotonin transporter and receptor gene variations in the acute effects of MDMA in healthy subjects. ACS Chem Neurosci 10:3120–3131

    Article  CAS  PubMed  Google Scholar 

  • Wolff K, Tsapakis EM, Pariante CM et al (2012) Pharmacogenetic studies of change in cortisol on ecstasy (MDMA) consumption. J Psychopharmacol 26:419–428

    Google Scholar 

  • Wolfson PE, Andries J, Feduccia AA et al (2020) MDMA-assisted psychotherapy for treatment of anxiety and other psychological distress related to life-threatening illnesses: a randomized pilot study. Sci Rep 10:20442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO). Available at: https://www.who.int/substance_abuse/ungass-leaflet.pdf?ua=1

  • Wright NE, Strong JA, Gilbart ER et al (2015) 5-HTTLPR genotype moderates the effects of past ecstasy use on verbal memory performance in adolescent and emerging adults: a pilot study. PLoS One 10:e0134708

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubero-Lahoz S, Pardo R, Farré M et al (2011) Sex differences in 3,4-methylenedioxymethamphetamine (MDMA; ecstasy)-induced cytochrome P450 2D6 inhibition in humans. Clin Pharmacokinet 50:319–329

    Google Scholar 

  • Yubero-Lahoz S, Kuypers KP, Ramaekers JG et al (2015) Changes in serotonin transporter (5-HTT) gene expression in peripheral blood cells after MDMA intake. Psychopharmacology 232:1921–1929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Pérez-Mañá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Papaseit, E., Farré, M., Pérez-Mañá, C. (2022). Drug and MDMA Interactions Implications for Public Health. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-92392-1_121

Download citation

Publish with us

Policies and ethics