Skip to main content

Effect of Dichloroethane on the Electronic Transport Behavior in Semiconducting MoS2

  • Conference paper
  • First Online:
TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3372 Accesses

Abstract

The effect of dichloroethane on the light-induced electronic behaviour of two-dimensional MoS2 has been reported in this work. The Raman spectra gathered on the 2D MoS2 crystallites confirm the presence of the out-of-plane and the in-plane vibrational modes for multilayer MoS2. The photoluminescence (PL) measurements reveal a quantum confined bandgap occurring at ~1.83 eV for our mechanically exfoliated 2D MoS2 membranes. Electronic transport measurements on our membranes were conducted by using electron beam lithography with Au/Ti electrodes deposited using physical vapor deposition. After the electrodes were patterned for metal deposition by lift-off, two-terminal and three-terminal electronic transport measurements were initiated on the fabricated devices. These measurements revealed that electrons are presumed to be donated to the 2D MoS2 through the substitution of chlorine atoms from exposure to dichloroethane in solution form after device fabrication, where the chlorine atoms occupy the naturally occurring sulphur vacancy sites in this van der Waals solid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453

    Article  CAS  Google Scholar 

  3. Zhou X, Sun H, Bai X (2020) Two-dimensional transition metal dichalcogenides: synthesis, biomedical applications and biosafety evaluation. Front Bioeng Biotechnol 8:236. https://doi.org/10.3389/fbioe.2020.00236

  4. Kaul AB (2014) Two-dimensional layered materials: structure, properties, and prospects for device applications. J Mater Res 29(3):348–361

    Article  CAS  Google Scholar 

  5. Mehta R, Min M, Kaul AB (2020) Sol-gel synthesized indium tin oxide as a transparent conducting oxide with solution-processed black phosphorus for its integration into solar-cells. J Vacuum Sci Technol B, 38(6):063203

    Google Scholar 

  6. Desai JA, Bandyopadhyay A, Min M, Saenz G, Kaul AB (2020) A photo-capacitive sensor operational from 6 K to 350 K with a solution printable, thermally-robust hexagonal boron nitride (h-BN) dielectric and conductive graphene electrodes. Appl Mater Today 20:100660

    Google Scholar 

  7. Hossain RF, Min M, Ma LC, Sakri SR, Kaul AB (2021) Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics. npj 2D Mater Appl 5(1):1–2

    Google Scholar 

  8. Min M, Sakri S, Saenz GA, Kaul AB (2021) Photophysical dynamics in semiconducting graphene quantum dots integrated with 2D MoS2 for optical enhancement in the near UV. ACS Appl Mater Interfaces 13(4):5379–5389

    Article  CAS  Google Scholar 

  9. Mehta RK, Kaul AB (2021) Black phosphorus-molybdenum disulfide hetero-junctions formed with ink-jet printing for potential solar cell applications with indium-Tin-oxide. Curr Comput-Aided Drug Des 11(5):560

    CAS  Google Scholar 

  10. Liu H, Si M, Deng Y, Neal AT, Du Y, Najmaei S, Ajayan PM, Lou J, Ye PD (2014) Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano 8(1):1031–1038

    Google Scholar 

  11. Kim G-S, Kim S-W, Kim S-H, Park J, Seo Y, Cho BJ, Shin C, Shim JH, Yu H-Y (2016) Effective schottky barrier height lowering of Metal/n-Ge with a TiO2/GeO2 interlayer stack. ACS Appl Mater Interfaces 8(51):35419–35425

    Article  CAS  Google Scholar 

  12. Kobayashi M, Kinoshita A, Saraswat K, Wong HS, Nishi Y (2009) Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J Appl Phys 105(2):023702

    Google Scholar 

  13. Hong YK, Yoo G, Kwon J, Hong S, Song WG, Liu N, Omkaram I, Yoo B, Ju S, Kim S, Oh MS (2016) High performance and transparent multilayer MoS2 transistors: tuning Schottky barrier characteristics. AIP Adv 6(5):055026

    Google Scholar 

  14. Brillson LJ, Lu Y (2011) ZnO Schottky barriers and Ohmic contacts. J Appl Phys 109(12):8

    Google Scholar 

  15. Lousberg GP, Yu HY, Froment B, Augendre E, Keersgieter AD, Lauwers A, Li M-F, Absil P, Jurczak M, Biesemans S (2007) Schottky-barrier height lowering by an increase of the substrate doping in ptsi schottky barrier source/drain FETs. IEEE Electron Device Lett 28(2):123–125

    Article  CAS  Google Scholar 

  16. Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung PY, Tieckelmann R, Tsai W, Hobbs C, Ye PD (2014) Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett 14(11):6275–6280

    Article  CAS  Google Scholar 

  17. Ryder CR, Wood JD, Wells SA, Hersam MC (2016) Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10(4):3900–3917

    Article  CAS  Google Scholar 

  18. Luo P, Zhuge F, Zhang Q, Chen Y, Lv L, Huang Y, Li H, Zhai T (2019) Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horizons 4(1):26–51

    Article  CAS  Google Scholar 

  19. Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh MM, Lodha S (2014) Schottky barrier heights for Au and Pd contacts to MoS2. Appl Phys Lett 105(11):113505

    Google Scholar 

  20. Liu X, Yuan Y, Qu D, Sun J (2019) Ambipolar MoS2 field‐effect transistor by spatially controlled chemical doping. Physica status solidi (RRL). Rapid Res Lett 13(9):1900208

    Google Scholar 

  21. Li M, Yao J, Wu X, Zhang S, Xing B, Niu X, Yan X, Yu Y, Liu Y, Wang Y (2020) P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl Mater Interfaces 12(5):6276–6282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. M. thanks Kishan Jayanand for providing assistance in some of the transport measurements. We acknowledge the Office of Naval Research (ONR) (Grant No. ONR N00014-19-1-2142) that enabled us to pursue this work. A.B.K. is also grateful to the support received from the University of North Texas (UNT) PACCAR Technology Institute and Endowed Professorship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama B. Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, R., Kaul, A.B. (2022). Effect of Dichloroethane on the Electronic Transport Behavior in Semiconducting MoS2. In: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92381-5_144

Download citation

Publish with us

Policies and ethics