Skip to main content

Strategies for the Upgrade of a TBZC Product (Tetra Basic Zinc Chloride) by Selective Removal of the Impurity Chlorine

  • Conference paper
  • First Online:
TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3450 Accesses

Abstract

When recycling materials containing zinc in hydrochloric acid processes, the precipitation of zinc can lead to the formation of various compounds which can be assigned to the group of zinc hydroxide chlorides. This paper compares different approaches for the selective removal of chlorine from tetra basic zinc chloride to obtain a cleaned zinc product. The removal of chlorine via soda leaching at atmospheric conditions as well as under overpressure in an autoclave was investigated. Furthermore, concepts were considered in which the chlorine can be evaporated as a compound and thus separated via selective temperature and atmospheric control. Thereby, a focus is on the simulation of pyrohydrolysis and clinkering for the separation of chlorine via gaseous compounds whereby zinc remains and can be brought to further processing. The simulations with multivariant parameters are carried out using the thermochemical calculation software package FactSage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moezzi A, Cortie M, McDonagh A (2016) Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide. Dalton Trans (Cambridge, England: 2003) 45(17):7385–7390. https://doi.org/10.1039/c5dt04864h

  2. Maltanava H et al (2018) Synthesis of ZnO mesoporous powders and their application in dye photodegradation. Mater Today Proc 5(9):17414–17421. https://doi.org/10.1016/j.matpr.2018.06.043

    Article  CAS  Google Scholar 

  3. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829–R858. https://doi.org/10.1088/0953-8984/16/25/R01

  4. Izyumskaya N, Avrutin V, Özgür Ü, Alivov YI, Morkoç H (2007) Preparation and properties of ZnO and devices. Phys Stat Sol (B) 244(5):1439–1450. https://doi.org/10.1002/pssb.200675101

  5. Özgür Ü et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):41301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  6. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng, B 80(1–3):383–387. https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  7. Shaporev AS, Ivanov VK, Baranchikov AE, Polezhaeva OS, Tret’yakov YD (2007) ZnO formation under hydrothermal conditions from zinc hydroxide compounds with various chemical histories. Russ J Inorg Chem 52(12):1811–1816. https://doi.org/10.1134/S0036023607120017

  8. Long T, Yin S, Takabatake K, Zhnag P, Sato T (2008) Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res Lett 4(3):247–253. https://doi.org/10.1007/s11671-008-9233-2

    Article  CAS  Google Scholar 

  9. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Materials (Basel, Switzerland) 7(4):2833–2881. https://doi.org/10.3390/ma7042833

    Article  CAS  Google Scholar 

  10. Porter LM, Das K, Dong Y, Melby JH, Virshup AR (2011) Contacts to wide-band-gap semiconductors. In: Comprehensive semiconductor science and technology. Elsevier, pp 44–85

    Google Scholar 

  11. Rostas AM, Kuncser AC, Ghica D, Palici A, Maraloiu VA, Vlaicu ID (2020) Electron paramagnetic resonance and microstructural insights into the thermal behavior of simonkolleite nanoplatelets. Phys Chem Chem Phys 22(17):9503–9512. https://doi.org/10.1039/d0cp00641f

    Article  CAS  Google Scholar 

  12. Gorodylova N, Cousy S, Šulcová P, Svoboda L (2017) Thermal transformation of layered zinc hydroxide chloride. J Therm Anal Calorim 127(1):675–683. https://doi.org/10.1007/s10973-016-5517-4

    Article  CAS  Google Scholar 

  13. Tavares SR, Vaiss VS, Wypych F, Leitão AA (2014) Similarities between zinc hydroxide chloride monohydrate and its dehydrated form: a theoretical study of their structures and anionic exchange properties. J Phys Chem C 118(33):19106–19113. https://doi.org/10.1021/jp504051z

    Article  CAS  Google Scholar 

  14. Leal DA, Silva GM, Tedim J, Wypych F, Marino CEB (2020) Synthesis and characterization of gordaite, osakaite and simonkolleite by different methods: comparison, phase interconversion, and potential corrosion protection applications. J Solid State Chem 291:121595. https://doi.org/10.1016/j.jssc.2020.121595

  15. Zhang, Yanagisawa K (2007) Hydrothermal synthesis of zinc hydroxide chloride sheets and their conversion to ZnO. Chem Mater 19(9):2329–2334. https://doi.org/10.1021/cm0626841

  16. Tanaka H, Fujioka A (2010) Influence of thermal treatment on the structure and adsorption properties of layered zinc hydroxychloride. Mater Res Bull 45(1):46–51. https://doi.org/10.1016/j.materresbull.2009.09.003

    Article  CAS  Google Scholar 

  17. Garcia-Martinez O, Vila E, Martin de Vidales JL, Rojas RM, Petrov K (1994) On the thermal decomposition of the zinc(II) hydroxide chlorides Zn5(OH)8Cl2H2O and β-Zn(OH)Cl. J Mater Sci 29(20):5429–5434. https://doi.org/10.1007/BF01171557

    Article  CAS  Google Scholar 

  18. Martinez OG, Cano-Ruiz J (1967) Basic salts VI: properties of basic salts of divalent heavy metals, vol 63

    Google Scholar 

  19. Arjona AM, Andres JA, Martinez OG, Cano-Ruiz J (1967) Basic salts. VII.: thermal decomposition of copper and zinc hydroxychlorides, vol 63

    Google Scholar 

  20. Srivastava OK, Secco EA (1967) Studies on metal hydroxy compounds. I. Thermal analyses of zinc derivatives ϵ-Zn(OH)2 Zn5(OH)8Cl2·H2O, β-ZnOHCl, and ZnOHF. Can J Chem 45(6):579–583. https://doi.org/10.1139/v67-096

    Article  CAS  Google Scholar 

  21. Hoffman JW, Lauder I (1968) Basic zinc chlorides. Aust J Chem 21(6):1439. https://doi.org/10.1071/CH9681439

    Article  CAS  Google Scholar 

  22. Rasines I, Morales de Setién JI (1980) Thermal analysis of β-Co2(OH)3Cl and Zn5(OH)5Cl2·H2O. Thermochim Acta 37(2):239–246. https://doi.org/10.1016/0040-6031(80)80044-X

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology, and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Höber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Höber, L., Ahmed, R., Hofbauer, T., Steinlechner, S. (2022). Strategies for the Upgrade of a TBZC Product (Tetra Basic Zinc Chloride) by Selective Removal of the Impurity Chlorine. In: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92381-5_10

Download citation

Publish with us

Policies and ethics