Skip to main content

Low-Temperature Polymer Electrolyte Fuel Cells

  • Chapter
  • First Online:
Electrochemical Cell Calculations with OpenFOAM

Part of the book series: Lecture Notes in Energy ((LNEN,volume 42))

  • 920 Accesses

Abstract

As a clean and quiet device, polymer-electrolyte fuel cells (PEFCs), also known as proton exchange membrane fuel cells (PEMFCs), have attracted increasing attention over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson M et al (2016) A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells. Appl Energy 180:757–778

    Article  Google Scholar 

  • Zhang G, Jiao K (2018a) Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review. J Power Sources 391:120–133

    Article  Google Scholar 

  • Khetabi EM et al (2019) Effects of mechanical compression on the performance of polymer electrolyte fuel cells and analysis through in-situ characterisation techniques - areview. J Power Sources 424:8–26

    Article  Google Scholar 

  • Dafalla AM, Jiang F (2018) Stresses and their impacts on proton exchange membrane fuel cells: areview. Int J Hydrogen Energy 43(4):2327–2348

    Article  Google Scholar 

  • Qiu Det al (2019) Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renew Sustain Energy Rev 113: 109289

    Google Scholar 

  • Karan K (2017) PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr Opin Electrochem 5(1):27–35

    Article  Google Scholar 

  • Zamel N (2016) The catalyst layer and its dimensionality – alook into its ingredients and how to characterize their effects. J Power Sources 309:141–159

    Article  Google Scholar 

  • Park S, Lee J-W, Popov BN (2012) A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydrogen Energy 37(7):5850–5865

    Article  Google Scholar 

  • Wang J (2015) Theory and practice of flow field designs for fuel cell scaling-up: a critical review. Appl Energy 157:640–663

    Article  Google Scholar 

  • Arvay A et al (2013) Nature inspired flow field designs for proton exchange membrane fuel cell. Int J Hydrogen Energy 38(9):3717–3726

    Article  Google Scholar 

  • Fadzillah DM et al (2017) Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renew Sustain Energy Rev 77:1001–1009

    Article  Google Scholar 

  • Liu X et al (2015) Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review. J Power Sources 299:85–96

    Article  Google Scholar 

  • Lile JRD, Zhou S (2015) Theoretical modeling of the PEMFC catalyst layer: a review of atomistic methods. Electrochim Acta 177:4–20

    Article  Google Scholar 

  • Weber AZ et al (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161:F1254–F1299

    Article  Google Scholar 

  • Wu H-W (2016) A review of recent development: transport and performance modeling of PEM fuel cells. Appl Energy 165:81–106

    Article  Google Scholar 

  • Teranishi K, Tsushima S, Hirai S (2006) Analysis of water transport in PEFCs by magnetic resonance imaging measurement. J Electrochem Soc 153(4):A664–A668

    Article  Google Scholar 

  • Panchenko O et al (2018) In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy. J Power Sources 390:108–115

    Article  Google Scholar 

  • Jabbour L et al (2015) Feasibility of in-plane GDL structuration: Impact on current density distribution in large-area proton exchange membrane fuel cells. J Power Sources 299:380–390

    Article  Google Scholar 

  • Jinuntuya F et al (2018) The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method. J Power Sources 378:53–65

    Article  Google Scholar 

  • Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell modell. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  • Bernardi DM, Verbrugge MW (1992) A mathematical model of the solid-polymer-electrolyte fuel cell. J Electrochem Soc 139(9):2477–2491

    Article  Google Scholar 

  • Nguyen TV, White RE (1993) A water and heat management model for proton-exchange-membrane fuel cells. J Electrochem Soc 140(8):2178–2186

    Article  Google Scholar 

  • Yi JS, Nguyen TV (1998) An along–the–channel model for proton exchange membrane fuel cells. J Electrochem Soc 145(4):1149–1159

    Article  Google Scholar 

  • Gurau V, Liu H, Kakaç S (1998) Two-dimensional model for proton exchange membrane fuel cells. AIChE J 44(11):2410–2422

    Article  Google Scholar 

  • Berning T, Lu DM, Djilali N (2002) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J Power Sources 106:284–294

    Article  Google Scholar 

  • Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150:A1589–A1598

    Article  Google Scholar 

  • Ferreira RB et al (2015) Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method – a review. J Power Sources 277:329–342

    Article  Google Scholar 

  • Ferreira RB et al (2017) 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell. Appl Energy 203:474–495

    Article  Google Scholar 

  • Andersson M et al (2019) Modeling of droplet detachment using dynamic contact angles in polymer electrolyte fuel cell gas channels. Int J Hydrogen Energy 44(21):11088–11096

    Article  Google Scholar 

  • Andersson M et al (2018) Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells. J Power Sources 404:159–171

    Article  Google Scholar 

  • Zhang G, Jiao K (2018b) Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Convers Manage 176:409–421

    Article  Google Scholar 

  • Fan L, Zhang G, Jiao K (2017) Characteristics of PEMFC operating at high current density with low external humidification. Energy Convers Manage 150:763–774

    Article  Google Scholar 

  • Gurau V, Zawodzinski TA Jr, Mann JA Jr (2008) Two-phase transport in PEM fuel cell cathodes. J Fuel Cell Sci Technol 5(2)

    Google Scholar 

  • Zhang S et al (2019) Polymer electrolyte fuel cell modeling - acomparison of two models with different levels of complexity. J Electrochem Soc

    Google Scholar 

  • Beale SB et al (2016) Open-source computational model of a solid oxide fuel cell. Comput Phys Commun 200:15–26

    Article  Google Scholar 

  • Reimer U et al (2019) An engineering toolbox for the evaluation of metallic flow field plates. ChemEngineering 3(4)

    Google Scholar 

  • Tsushima S, Hiran S (2015) An overview of cracks and interfacial voids in membrane electrode assemblies in polymer electrolyte fuel cells. J Therm Sci Technol 10(1):JTST0002–JTST0002

    Google Scholar 

  • Harlow FH (2004) Fluid dynamics in group T-3 Los Alamos national laboratory: (LA-UR-03-3852). J Comput Phys 195(2):414–433

    Article  MATH  Google Scholar 

  • Harlow FH, Amsden AA (1975) Numerical calculation of multiphase fluid flow. J Comput Phys 17(1):19–52

    Article  MATH  Google Scholar 

  • Spalding DB (1981) Numerical computation of multi-phase fluid flow and heat transfer. In: Von Karman Institute for fluid dynamics in numerical computation of multi-phase flows, pp 161–191

    Google Scholar 

  • Ishii M, Hibiki T (2010) Thermo-fluid dynamics of two-phase flow. Springer Science & Business Media

    Google Scholar 

  • Rusche H (2003) Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Imperial College London (University of London)

    Google Scholar 

  • Marschall H (2011) Towards the numerical simulation of multi-scale two-phase flows. Technische Universität München

    Google Scholar 

  • Schiller L (1933) A drag coefficient correlation. Zeit Ver Deutsch Ing 77:318–320

    Google Scholar 

  • Wu H, Li X, Berg P (2009) On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochim Acta 54(27):6913–6927

    Article  Google Scholar 

  • The OpenFOAM Foundation: OpenFOAM v6 User Guide. \url{https://cfd.direct/openfoam/user-guide}

  • Berg P, Kulikovsky AA (2015) A model for a crack or a delaminated region in a PEM fuel cell anode: analytical solutions. Electrochim Acta 174:424–429

    Article  Google Scholar 

  • Pasaogullari U, Wang CY (2004) Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J Electrochem Soc 151(3):A399–A406

    Article  Google Scholar 

  • Beale SB et al (2009) Two-phase flow and mass transfer within the diffusion layer of a polymer electrolyte membrane fuel cell. Comput Therm Sci: Int J 1:105–120

    Article  Google Scholar 

  • Shi Y, Janßen H, Lehnert W (2019) A transient behavior study of polymer electrolyte fuel cells with cyclic current profiles. Energies 12(12)

    Google Scholar 

  • Reimer U et al (2018) Irreversible losses in fuel cells. In: Hacker V, Mitsushima S (eds) Fuel cells and hydrogen - from fundamentals to applied research. Elsevier, pp 15–40

    Google Scholar 

  • OpenFuelCell

    Google Scholar 

  • Froning D et al (2016) Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells. J Power Sources 318:26–34

    Article  Google Scholar 

  • Yu J et al (2018a) Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells. J Power Sources 389:56–60

    Article  Google Scholar 

  • Yu J et al (2018b) Apparent contact angles of liquid water droplet breaking through a gas diffusion layer of polymer electrolyte membrane fuel cell. Int J Hydrogen Energy 43(12):6318–6330

    Article  Google Scholar 

  • Liang P et al (2018) Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates. Energy Convers Manage 169:334–344

    Article  Google Scholar 

  • Nam J et al (2010) Numerical analysis of gas crossover effects in polymer electrolyte fuel cells (PEFCs). Appl Energy 87:3699–3709

    Article  Google Scholar 

  • Chippar P, Ju H (2013) Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. Int J Hydrogen Energy 38:7704–7714

    Article  Google Scholar 

  • Chippar P et al (2014) Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 39:2863–2871

    Article  Google Scholar 

  • Kundu S et al (2006) Morphological features (defects) in fuel cell membrane electrode assemblies. J Power Sources 157(2):650–656

    Article  MathSciNet  Google Scholar 

  • Karst N et al (2010) Improvement of water management in polymer electrolyte membrane fuel cell thanks to cathode cracks. J Power Sources 195(16):5228–5234

    Article  Google Scholar 

  • Kim S, Mench MM (2007) Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: micro-structure effects. J Power Sources 174(1):206–220

    Article  Google Scholar 

  • Ding G et al (2016) Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy. J Power Sources 316:114–123

    Article  Google Scholar 

  • Kim S et al (2009) Investigation of the impact of interfacial delamination on polymer electrolyte fuel cell performance. J Electrochem Soc 156(1):B99–B108

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the help from many colleagues in IEK-14, Juelich Research Center. The discussion with Prof. Hrvoje Jasak, Dr. Henrik Rusche, and Dr. Holger Marschall provides many valuable insights for this research. The support of Juelich Aachen Research Alliance (JARA) High Performance Computing (HPC) is important to conduct the numerical simulations. The language review and editing performed by Mr. Christopher Wood is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shidong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S. (2022). Low-Temperature Polymer Electrolyte Fuel Cells. In: Beale, S., Lehnert, W. (eds) Electrochemical Cell Calculations with OpenFOAM. Lecture Notes in Energy, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92178-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92178-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92177-4

  • Online ISBN: 978-3-030-92178-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics