Skip to main content

Nonlinear Thermal Elastic Diffusion Problems Applicable to Surface Modification

  • Conference paper
  • First Online:
Advanced Problem in Mechanics II (APM 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This is a brief historical excursion into the development of the theory of thermoelastic diffusion. The difference between classical and generalized theories is noted. The method of derivation of constitutive relations on the basis of thermodynamics of irreversible processes leading to nonlinear theory is presented. Examples of application of nonlinear theory to modeling of interaction of diffusion, thermal and mechanical waves under ion implantation conditions are presented. The simplest isothermal task; the task for non-isothermal conditions as well as the task on interaction with the surface of the combined particle beam are analyzed. All tasks are formulated in the approximation of uniaxial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorsky, W.S.: Investigation of elastic effect in Cu-Al Al alloy with an ordered lattice. J. Exp. Theor. Phys. 6(3), 272–276 (1936). (in Russian)

    Google Scholar 

  2. Erofeeva, V.I., Leont’eva, A.V., Shekoyan, A.V.: Elastic waves in a thermoelastic medium with point defects. Tech. Phys. 65(1), 22–28 (2020). https://doi.org/10.1134/S1063784220010053

  3. Li, C., Guo, H., Tian, X., He, T.: Generalized thermoelastic diffusion problems with fractional order strain. Eur. J. Mech. A/Solids. 78, 103827 (2019). https://doi.org/10.1016/j.euromechsol.2019.103827

  4. Tripathi, J.J., Kedar, G.D., Deshmukh, K.C.: Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply. Acta Mech. 226(7), 2121–2134 (2015). https://doi.org/10.1007/s00707-015-1305-7

  5. Vestyak, A.V., Davydov, S.A., Zemskov, A.V., Tarlakovsky, D.V.: The non-stationary one-dimensional thermoelastic diffusion problem for homogeneous multicomponent media with plane boundaries. Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki. 160(1), 183–195 (2018). (in Russian)

    Google Scholar 

  6. Davydov, S.A., Zemskov, A.V.: Propagation of one-dimensional coupled thermoelastic perturbations in an isotropic half-space with regard to non-zero relaxation times. Trudy of Krylovskogo nauchnogo centra S2, 144–150 (2018). https://doi.org/10.24937/2542-2324-2018-2-S-I-144-150. (in Russian)

  7. Sherief, H., Hussein, E.: Two-dimensional problem for a half-space with axi-symmetric distribution in the theory of generalized thermoelastic diffusion. Mech. Adv. Mater. Struct. 23(2), 216–222 (2016). https://doi.org/10.1080/15376494.2014.949927

  8. Ashraf, M.Z.: Zenkour Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green-Naghdi model. J. Ocean Eng. Sci. 5, 214–222 (2020). https://doi.org/10.1016/j.joes.2019.12.001

  9. Kutbi, M.A., Zenkour, A.M.: Refined dual-phase-lag green–naghdi models for thermoelastic diffusion in an infinite medium. Waves Random Complex Media 1–19 (2020). https://doi.org/10.1080/17455030.2020.1807073

  10. He, T., Li, Y.: Transient responses of sandwich structure based on the generalized thermoelastic diffusion theory with memory-dependent derivative. J. Sandwich Struct. Mater. 22(8), 2505–2543 (2020). https://doi.org/10.1177/1099636218802574

  11. Nowacki, W.: Thermoelasticity, 2 edition. Pergamon Press, Oxford (1986)

    Google Scholar 

  12. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticit. MacGraw Hill Book Company, New York (1951)

    Google Scholar 

  13. Boley, B.A., Weiner, J.M.: Theory of Thermal Stresses. Jon Wiley and Sons, Hoboken (1960)

    Google Scholar 

  14. Biot, M.: Thermoelasticity and irreversible thermo-dynamics. J. Appl. Phys. 15, 249–253 (1956). https://doi.org/10.1063/1.1722402

  15. Kovakenko, A.D.: Introduction to Thermal elasticity. Naukova Dumka, Kiev (1965). (in Russian)

    Google Scholar 

  16. Gribamnov, V.F., Panichkin, N.G.: Coupled and Dynamic Problems of Thermal Elasticity. Mashinostroenie, Moscow (1984).(in Russian)

    Google Scholar 

  17. Valishin, A.A., Kartashov, E.M.: Modeling of coupling effects in the problem on impulce loading of thermo elastic media. Math. Model. Numer. Methods 3, 3–18 (2019). https://doi.org/10.18698/2309-3684-2019-3-318. (in Russian)

  18. Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024

  19. Luikov, A.V.: Application of irreversible thermodynamics methods to heat and mass transfer. J. Eng. Phys. Thermophysic. 9(3), 287–304 (1965)

    Google Scholar 

  20. Кaliski, S.: Wave Equations in Thermoelasticity. Bull. Polish Acad. Sci. Tech. Sci. 13(5), 409–416 (1965)

    Google Scholar 

  21. Babenkov, M.B.: Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation. J. Appl. Mech. Tech. Phys. 54(2), 277–286 (2013). https://doi.org/10.1134/S0021894413020132

  22. Babenkov, M.B., Ivanova, E.A.: Analysis of the wave propagation processes in heattransfer problem of the hyperbolic type. Continuum Mech. Thermodyn. 26, 483–502 (2014). https://doi.org/10.1007/s00161-013-0315-8

  23. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225, 757–795 (2014). https://doi.org/10.1007/s00707-013-0934-y

  24. Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Continuum Mech. Thermodyn. 28, 1759–1780 (2016). https://doi.org/10.1007/s00161-016-0508-z

  25. Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity. Solid Mechanics and Its Applications, pp. 0925–0042. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56934-5

  26. Berezovski, A., Engelbrecht, J., Ván, P.: Weakly nonlocal thermoelasticity formicrostructured solids: microdeformation and microtemperature. Arch. Appl. Mech. 84, 1249–1261 (2014). https://doi.org/10.1007/s00419-014-0858-6

  27. Nowacki, W.: Dynamical problems of thermodiffusion in solids I. Bull. Polish Acad. Sci. Tech. Sci. 22, 55–64 (1974)

    Google Scholar 

  28. Nowacki, W.: Dynamical problems of thermodiffusion in solids II. Bull. Polish Acad. Sci. Tech. Sci. 22, 129–135 (1974)

    Google Scholar 

  29. Nowacki, W.: Dynamical problems of thermodiffusion in solids III. Bull. Polish Acad. Sci. Tech. Sci. 22, 275–266 (1974)

    Google Scholar 

  30. Nowacki, W.: Dynamical problems of diffusion in solids. Eng. Fract. Mech. 8, 261–266 (1976). https://doi.org/10.1016/0013-7944(76)90091-6

  31. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: from Heat Engines to Dissipative Structures. Wiley, New York (2014)

    Book  Google Scholar 

  32. Wang, Y., Liu, D., Wang, Q., Shu, C.: Thermoelastic response of thin plate with variable material properties under transient thermal shock. Int. J. Mech. Sci. 104, 200–206 (2015). https://doi.org/10.1016/j.ijmecsci.2015.10.013

  33. Wang, Y.Z., Liu, D., Wang, Q., Zhou, J.Z.: Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock. J. Therm. Stresses 39(4), 460–473 (2016). https://doi.org/10.1080/01495739.2016.1158603

  34. Rychahivskyy, A.V., Tokovyy, Y.V.: Correct analytical solutions to the thermoelasticity problems in a semi-plane. J. Thermal Stresses. 31(11), 1125–1145 (2008). https://doi.org/10.1080/01495730802250854

  35. Yang, X., Ma, J., Liu, S., Xing, Y., Yang, J., Sun, Y.: An exact analytical solution for thermoelastic response of clamped beams subjected to a movable laser pulse. Symmetry 10, 139 (2018). https://doi.org/10.3390/sym10050139

  36. Jiang, J., Wang, L.: Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions. Acta Mech. Solida Sin. 30(5), 474–483 (2017). https://doi.org/10.1016/j.camss.2017.08.00

  37. Yu, T., Chien-Ching, M.: Analytical solutions to the 2D elasticity and thermoelasticity problems for inhomogeneous planes and half-planes. Arch. Appl. Mech.79, 441–456 (2009). https://doi.org/10.1007/s00419-008-0242-5

  38. Zemskov, A.V., Tarlakovskiy, D.V.: Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer. J. Appl. Mech. Tech. Phys. 56(6),C 1023–1030 (2015). https://doi.org/10.15372/PMTF20150612

  39. Igumnov, L.A., Tarlakovskii, D.V., Zemskov, A.V.: A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer. Lobachevskii J. Math. 38(5), 808–817 (2017). https://doi.org/10.1134/S1995080217050146

    Article  MathSciNet  MATH  Google Scholar 

  40. Davydov, S.A., Zemskov, A.V., Igumnov, L.A., Tarlakovskiy, D.V.: Nonstationary, model of mechanical diffusion for half-space with arbitrary boundary conditions. Mater. Phys. Mech. 28(1–2), 72–76 (2016)

    Google Scholar 

  41. Sharma, J.N.: Generalized thermoelastic diffusive waves in heat conducting materials. J. Sound Vib. 301, 979–993 (2007). https://doi.org/10.1016/j.jsv.2006.11.001

    Article  Google Scholar 

  42. Othman Mohamed, I.A., AtwaSarhan, Y., Farouk, R.M.: The effect of diffusion on two-dimensional problem of generalized thermoelasticity with green–naghdi theory. Int. Commun. Heat Mass Transfer. 36, 857–864 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.04.014

  43. Sherief, H.H., Hamza, F., Saleh, H.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004). https://doi.org/10.1016/j.ijengsci.2003.05.001

    Article  MathSciNet  MATH  Google Scholar 

  44. Knyazeva, A.G., Demidov, V.N.: Transfer coefficients for three component deformable alloy. Vestnik PermGTU, Mechanica. 3, 84–99 (2011). (in Russian)

    Google Scholar 

  45. Knyazeva, A.G.: Nonlinear models of deformable media with diffusion. Phys. Mesomech. 6, 35–51 (2011). (in Russian)

    Google Scholar 

  46. Gyarmati, I.: Non-equilibrium Thermodynamics: Field Theory and Variational Principles. (Softcover reprint of the original 1st ed. 1970 edition), Springer, Heidelberg (2013)

    Google Scholar 

  47. Knyazeva, A.G.: Modeling of irreversible processes in materials with large area of internal surfaces. Phys. Mesomech. 6(5), 11–27 (2003). (in Russian)

    Google Scholar 

  48. Knyazeva, A.G.: Application of Irreversible thermodynamics to diffusion in solids with internal surfaces. J. Non-Equilib. Thermodyn. 45(4), 401–417 (2020). https://doi.org/10.1515/jnet-2020-0021

    Article  Google Scholar 

  49. Wagner, C.: Thermodynamics of Alloy. Addison-Wesley Press, Boston (1952)

    Google Scholar 

  50. Kozheurov, V.A.: Statistical Thermodynamics. Metallurgiya, Moscow (1975).(in Russian)

    Google Scholar 

  51. Demidov, V.N., Knyazeva, A.G., Il’ina, E.S.: Dynamical model of initial stage of implantation process. Russ. Phys. J. 55(5/2), 34–41 (2012). (in Russian)

    Google Scholar 

  52. Il’ina, E.S., Demidov, V.N., Knyazeva, A.G.: The features of modeling of diffusion processes in elastic body at its surface modification by particles. Vestnik PNIPU Mech..3, 25–49 (2012). (in Russian)

    Google Scholar 

  53. Parfenova, E.S., Knyazeva, A.G., Azhel, Y.P.: Dynamics of diffusion and mechanical waves interaction under conditions of metal surface treatment with particle fluxes. Adv. Mater. Res. 1040, 466–471 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1040.466

  54. Parfenova, E.S., Knyazeva, A.G.: The features of diffusion and mechanical waves interaction at the initial stage of metal surface treatment by particle beam under nonisothermal conditions. Key Eng. Mater. 712, 99–104 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.99

    Article  Google Scholar 

  55. Parfenova, E.S., Knyazeva, A.G.: Initial stage of interaction of charged particles flux with target. Russ. Phys. J. 61(8/2), 137–140 (2018). (in Russian)

    Google Scholar 

  56. Parfenova, E.S., Knyazeva, A.G.: Non-isothermal mechanodiffusion model of the initial stage of the process of penetration of the particle beam into the target surface. Comput. Continuum Mech. 12(1), 36–47 (2019). https://doi.org/10.7242/1999-6691/2019.12.1.4. (in Russian)

  57. Parfenova, E.S., Knyazeva, A.G.: Non-isothermal model of ion implantation with combined ion beam. In: AIP Conference Proceedings, vol. 1783, p. 020184 (2016). https://doi.org/10.1063/1.4966478

Download references

Acknowledgements

The work was performed according to the Government research assignment for ISPMS SB RAS, project FWRW-2022-0003.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knyazeva, A.G., Parfenova, E.S. (2022). Nonlinear Thermal Elastic Diffusion Problems Applicable to Surface Modification. In: Indeitsev, D.A., Krivtsov, A.M. (eds) Advanced Problem in Mechanics II. APM 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-92144-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92144-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92143-9

  • Online ISBN: 978-3-030-92144-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics