Skip to main content

Artificial Intelligence-Based Evaluation of the Aorta

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Abstract

Machine learning (ML) and deep learning (DL) algorithms have recently gained traction in the field of aortic imaging for their potential to provide novel insights and to standardize the extraction of imaging features while delivering accurate and reproducible results. With DL algorithms, it is now possible to model complex relationships within vast imaging and clinical datasets. In this chapter, we highlighted the most recent ML and DL applications in image segmentation, image classification, and outcome prediction of patients with aortic dissection and abdominal aortic aneurysm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nienaber CA, Clough RE, Sakalihasan N, Suzuki T, Gibbs R, Mussa F, Jenkins MP, Thompson MM, Evangelista A, Yeh JS, Cheshire N, Rosendahl U, Pepper J. Aortic dissection. Nat Rev Dis Primers. 2016;2:16053. https://doi.org/10.1038/nrdp.2016.53.

    Article  PubMed  Google Scholar 

  2. Codari M, Pepe A, Mistelbauer G, Mastrodicasa D, Walters S, Willemink MJ, Fleischmann D. Deep reinforcement learning for localization of the aortic annulus in patients with aortic dissection. In: Thoracic image analysis. Cham: Springer International Publishing; 2020. p. 94–105.

    Chapter  Google Scholar 

  3. Hahn LD, Mistelbauer G, Higashigaito K, Koci M, Willemink MJ, Sailer AM, Fischbein M, Fleischmann D. CT-based true- and false-lumen segmentation in type B aortic dissection using machine learning. Radiol Cardiothora Imaging. 2020;2(3):e190179. https://doi.org/10.1148/ryct.2020190179.

    Article  Google Scholar 

  4. Lopez-Linares K, Aranjuelo N, Kabongo L, Maclair G, Lete N, Ceresa M, Garcia-Familiar A, Macia I, Gonzalez Ballester MA. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Med Image Anal. 2018;46:202–14. https://doi.org/10.1016/j.media.2018.03.010.

    Article  PubMed  Google Scholar 

  5. Wojnarski CM, Svensson LG, Roselli EE, Idrees JJ, Lowry AM, Ehrlinger J, Pettersson GB, Gillinov AM, Johnston DR, Soltesz EG, Navia JL, Hammer DF, Griffin B, Thamilarasan M, Kalahasti V, Sabik JF 3rd, Blackstone EH, Lytle BW. Aortic dissection in patients with bicuspid aortic valve-associated aneurysms. Ann Thorac Surg. 2015;100(5):1666–73. https://doi.org/10.1016/j.athoracsur.2015.04.126; discussion 1673-1664.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hadjianastassiou VG, Franco L, Jerez JM, Evangelou IE, Goldhill DR, Tekkis PP, Hands LJ. Informed prognosis [corrected] after abdominal aortic aneurysm repair using predictive modeling techniques [corrected]. J Vasc Surg. 2006;43(3):467–73. https://doi.org/10.1016/j.jvs.2005.11.022.

    Article  PubMed  Google Scholar 

  7. Zheng Y, John M, Liao R, Nottling A, Boese J, Kempfert J, Walther T, Brockmann G, Comaniciu D. Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation. IEEE Trans Med Imaging. 2012;31(12):2307–21. https://doi.org/10.1109/TMI.2012.2216541.

    Article  PubMed  Google Scholar 

  8. Al WA, Jung HY, Yun ID, Jang Y, Park HB, Chang HJ. Automatic aortic valve landmark localization in coronary CT angiography using colonial walk. PLoS One. 2018;13(7):e0200317. https://doi.org/10.1371/journal.pone.0200317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, Comaniciu D. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell. 2019;41(1):176–89. https://doi.org/10.1109/TPAMI.2017.2782687.

    Article  PubMed  Google Scholar 

  10. Rueckel J, Reidler P, Fink N, Sperl J, Geyer T, Fabritius MP, Ricke J, Ingrisch M, Sabel BO. Artificial intelligence assistance improves reporting efficiency of thoracic aortic aneurysm CT follow-up. Eur J Radiol. 2021;134:109424. https://doi.org/10.1016/j.ejrad.2020.109424.

    Article  CAS  PubMed  Google Scholar 

  11. Abdullah Al W, Yun ID. Partial policy-based reinforcement learning for anatomical landmark localization in 3D medical images. IEEE Trans Med Imaging. 2020;39(4):1245–55. https://doi.org/10.1109/TMI.2019.2946345.

    Article  PubMed  Google Scholar 

  12. Alansary A, Oktay O, Li Y, Folgoc LL, Hou B, Vaillant G, Kamnitsas K, Vlontzos A, Glocker B, Kainz B, Rueckert D. Evaluating reinforcement learning agents for anatomical landmark detection. Med Image Anal. 2019;53:156–64. https://doi.org/10.1016/j.media.2019.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Astudillo P, Mortier P, Bosmans J, De Backer O, de Jaegere P, Iannaccone F, De Beule M, Dambre J. Automatic detection of the aortic annular plane and coronary ostia from multidetector computed tomography. J Interv Cardiol. 2020;2020:9843275. https://doi.org/10.1155/2020/9843275.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Noothout JMH, De Vos BD, Wolterink JM, Postma EM, Smeets PAM, Takx RAP, Leiner T, Viergever MA, Isgum I. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans Med Imaging. 2020;39(12):4011–22. https://doi.org/10.1109/TMI.2020.3009002.

    Article  PubMed  Google Scholar 

  15. Noothout JM, De Vos BD, Wolterink JM, Išgum I. Automatic segmentation of thoracic aorta segments in low-dose chest CT. In: Medical Imaging 2018: Image Processing. International Society for Optics and Photonics; 2018. p. 105741S.

    Google Scholar 

  16. Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, Gareen IF, Gatsonis C, Goldin J, Gohagan JK, Hillman B, Jaffe C, Kramer BS, Lynch D, Marcus PM, Schnall M, Sullivan DC, Sullivan D, Zylak CJ, National Lung Screening Trial Research T. The National Lung Screening Trial: overview and study design. Radiology. 2011;258(1):243–53. https://doi.org/10.1148/radiol.10091808.

    Article  PubMed  Google Scholar 

  17. Fantazzini A, Esposito M, Finotello A, Auricchio F, Pane B, Basso C, Spinella G, Conti M. 3D automatic segmentation of aortic computed tomography angiography combining multi-view 2D convolutional neural networks. Cardiovasc Eng Technol. 2020;11(5):576–86. https://doi.org/10.1007/s13239-020-00481-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao L, Shi R, Ge Y, Xing L, Zuo P, Jia Y, Liu J, He Y, Wang X, Luan S, Chai X, Guo W. Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning. Eur J Radiol. 2019;121:108713. https://doi.org/10.1016/j.ejrad.2019.108713.

    Article  PubMed  Google Scholar 

  19. Cheng J, Tian S, Yu L, Ma X, Xing Y. A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection. Biomed Signal Processing Cont. 2020;62:102145. https://doi.org/10.1016/j.bspc.2020.102145.

    Article  Google Scholar 

  20. Bai W, Suzuki H, Qin C, Tarroni G, Oktay O, Matthews PM, Rueckert D. Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In: Medical image computing and computer assisted intervention – miccai 2018. Cham: Springer International Publishing; 2018. p. 586–94.

    Chapter  Google Scholar 

  21. de Bruijne M, van Ginneken B, Viergever MA, Niessen WJ. Interactive segmentation of abdominal aortic aneurysms in CTA images. Med Image Anal. 2004;8(2):127–38. https://doi.org/10.1016/j.media.2004.01.001.

    Article  PubMed  Google Scholar 

  22. Subasic M, Loncaric S, Sorantin E. 3-D image analysis of abdominal aortic aneurysm. Stud Health Technol Inform. 2000;77:1195–200.

    CAS  PubMed  Google Scholar 

  23. Zhuge F, Rubin GD, Sun S, Napel S. An abdominal aortic aneurysm segmentation method: level set with region and statistical information. Med Phys. 2006;33(5):1440–53. https://doi.org/10.1118/1.2193247.

    Article  PubMed  Google Scholar 

  24. Maiora J, Papakostas GA, Kaburlasos VG, Grana M. A proposal of texture features for interactive CTA segmentation by active learning. Stud Health Technol Inform. 2014;207:311–20.

    CAS  PubMed  Google Scholar 

  25. Lalys F, Yan V, Kaladji A, Lucas A, Esneault S. Generic thrombus segmentation from pre- and post-operative CTA. Int J Comput Assist Radiol Surg. 2017;12(9):1501–10. https://doi.org/10.1007/s11548-017-1591-8.

    Article  PubMed  Google Scholar 

  26. Joldes GR, Miller K, Wittek A, Forsythe RO, Newby DE, Doyle BJ. BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci Rep. 2017;7(1):4641. https://doi.org/10.1038/s41598-017-04699-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang D, Zhang R, Zhu J, Teng Z, Huang Y, Spiga F, Hong-Fei Du M, Gillard JH, Lu Q, Lio P. Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method. Proc SPIE Int Soc Opt Eng. 2018;10574 https://doi.org/10.1117/12.2293371.

  28. Lareyre F, Adam C, Carrier M, Dommerc C, Mialhe C, Raffort J. A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Sci Rep. 2019;9(1):13750. https://doi.org/10.1038/s41598-019-50251-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris RJ, Kim S, Lohr J, Towey S, Velichkovich Z, Kabachenko T, Driscoll I, Baker B. Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J Digit Imaging. 2019;32(6):939–46. https://doi.org/10.1007/s10278-019-00281-5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hata A, Yanagawa M, Yamagata K, Suzuki Y, Kido S, Kawata A, Doi S, Yoshida Y, Miyata T, Tsubamoto M, Kikuchi N, Tomiyama N. Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. Eur Radiol. 2021;31(2):1151–9. https://doi.org/10.1007/s00330-020-07213-w.

    Article  PubMed  Google Scholar 

  31. Wu J, Qiu J, Xie E, Jiang W, Zhao R, Qiu J, Zafar MA, Huang Y, Yu C. Predicting in-hospital rupture of type a aortic dissection using random. Forest J Thorac Dis. 2019;11(11):4634–46. https://doi.org/10.21037/jtd.2019.10.82.

    Article  PubMed  Google Scholar 

  32. Macrina F, Puddu PE, Sciangula A, Trigilia F, Totaro M, Miraldi F, Toscano F, Cassese M, Toscano M. Artificial neural networks versus multiple logistic regression to predict 30-day mortality after operations for type a ascending aortic dissection. Open Cardiovasc Med J. 2009;3:81–95. https://doi.org/10.2174/1874192400903010081.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Macrina F, Puddu PE, Sciangula A, Totaro M, Trigilia F, Cassese M, Toscano M. Long-term mortality prediction after operations for type a ascending aortic dissection. J Cardiothorac Surg. 2010;5:42. https://doi.org/10.1186/1749-8090-5-42.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee R, Jarchi D, Perera R, Jones A, Cassimjee I, Handa A, Clifton DA, Oxford Abdominal Aortic Aneurysm Study A, Oxford Regional Vascular S. Applied machine learning for the prediction of growth of abdominal aortic aneurysm in humans. EJVES Short Rep. 2018;39:24–8. https://doi.org/10.1016/j.ejvssr.2018.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kleinstreuer C, Li Z. Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed Eng Online. 2006;5:19. https://doi.org/10.1186/1475-925X-5-19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wise ES, Hocking KM, Brophy CM. Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network. J Vasc Surg. 2015;62(1):8–15. https://doi.org/10.1016/j.jvs.2015.02.038.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monsalve-Torra A, Ruiz-Fernandez D, Marin-Alonso O, Soriano-Paya A, Camacho-Mackenzie J, Carreno-Jaimes M. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62:195–201. https://doi.org/10.1016/j.jbi.2016.07.007.

    Article  PubMed  Google Scholar 

  38. Turton EP, Scott DJ, Delbridge M, Snowden S, Kester RC. Ruptured abdominal aortic aneurysm: a novel method of outcome prediction using neural network technology. Eur J Vasc Endovasc Surg. 2000;19(2):184–9. https://doi.org/10.1053/ejvs.1999.0974.

    Article  CAS  PubMed  Google Scholar 

  39. Karthikesalingam A, Attallah O, Ma X, Bahia SS, Thompson L, Vidal-Diez A, Choke EC, Bown MJ, Sayers RD, Thompson MM, Holt PJ. An artificial neural network stratifies the risks of Reintervention and mortality after endovascular aneurysm repair; a retrospective observational study. PLoS One. 2015;10(7):e0129024. https://doi.org/10.1371/journal.pone.0129024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Attallah O, Karthikesalingam A, Holt PJ, Thompson MM, Sayers R, Bown MJ, Choke EC, Ma X. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection. Proc Inst Mech Eng H. 2017;231(11):1048–63. https://doi.org/10.1177/0954411917731592.

    Article  PubMed  Google Scholar 

  41. Attallah O, Karthikesalingam A, Holt PJE, Thompson MM, Sayers R, Bown MJ, Choke EC, Ma X. Feature selection through validation and un-censoring of endovascular repair survival data for predicting the risk of re-intervention. BMC Med Inform Decis Mak. 2017;17(1):115. https://doi.org/10.1186/s12911-017-0508-3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garcia G, Maiora J, Tapia A, De Blas M. Evaluation of texture for classification of abdominal aortic aneurysm after endovascular repair. J Digit Imaging. 2012;25(3):369–76. https://doi.org/10.1007/s10278-011-9417-7.

    Article  PubMed  Google Scholar 

  43. Perrin D, Badel P, Orgeas L, Geindreau C, Dumenil A, Albertini JN, Avril S. Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J Biomech. 2015;48(10):1868–75. https://doi.org/10.1016/j.jbiomech.2015.04.031.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mastrodicasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastrodicasa, D. et al. (2022). Artificial Intelligence-Based Evaluation of the Aorta. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_47

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics