Skip to main content

Lung Cancer Characterization and Prognosis: The Role of Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1572 Accesses

Abstract

Lung cancer is the single deadliest cancer worldwide and improving survival is an unmet need. The application of artificial intelligence to the imaging assessment of lung cancer is a multifaceted and evolving field that may improve lung cancer outcomes in the future. Artificial intelligence could be applied at any and all of the milestones along the patient pathway in order to aid in the personalisation of medicine, through the development of imaging biomarkers, and the synthesis of these biomarkers with clinical, histological and genomic data. Studies to date have investigated how imaging biomarkers can be applied to lung cancer characterisation, treatment planning, prognostication and response prediction. This chapter will outline the current status of AI applications in these areas, and how these applications may develop in the future to provide a more streamlined, personalised and ultimately successful approach to managing lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Agency for Research on Cancer. All cancer types factsheet. Int Agency Res Cancer Globocan [Internet]. 2018;876:2018–9. Available from: http://gco.iarc.fr/today.

    Google Scholar 

  2. Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):138–55.

    Article  PubMed  Google Scholar 

  3. Lung cancer statistics | Cancer Research UK [Internet]. [cited 2018 Nov 19]. Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival#heading-Zero.

  4. Liu J, Cui J, Liu F, Yuan Y, Guo F, Zhang G. Multi-subtype classification model for non-small cell lung cancer based on radiomics: SLS model. Med Phys. 2019;46(7):3091–100.

    Article  PubMed  Google Scholar 

  5. Han Y, Ma Y, Wu Z, Zhang F, Zheng D, Liu X, et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Eur J Nucl Med Mol Imaging. 2020.

    Google Scholar 

  6. Hung JJ, Jeng WJ, Chou TY, Hsu WH, Wu KJ, Huang BS, et al. Prognostic value of the new international association for the study of lung cancer/American thoracic society/European respiratory society lung adenocarcinoma classification on death and recurrence in completely resected stage i lung adenocarcinoma. Ann Surg. 2013;258(6):1079–86.

    Article  PubMed  Google Scholar 

  7. Lu L, Wang D, Wang L, Guo P, Li Z, E L, et al. A quantitative imaging biomarker for predicting disease-free-survival-associated histologic subgroups in lung adenocarcinoma (European Radiology). Eur Radiol. 2020;30(7):3614–23. https://doi.org/10.1007/s00330-020-06663-6.

    Article  PubMed  Google Scholar 

  8. Yuan M, Zhang YD, Pu XH, Zhong Y, Li H, Wu JF, et al. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival. Eur Radiol. 2017;27(11):4857–65.

    Article  PubMed  Google Scholar 

  9. Park S, Lee SM, Noh HN, Hwang HJ, Kim S, Do KH, et al. Differentiation of predominant subtypes of lung adenocarcinoma using a quantitative radiomics approach on CT. Eur Radiol. 2020;30(9):4883–92.

    Article  PubMed  Google Scholar 

  10. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5

    Google Scholar 

  11. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Velazquez ER, Parmar C, et al. Defining the biological basis of radiomic phenotypes in lung cancer. elife. 2017;6:1–22.

    Article  Google Scholar 

  12. Aerts HJWL, Grossmann P, Tan Y, Oxnard GG, Rizvi N, Schwartz LH, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep [Internet]. 2016;6(June):1–8. https://doi.org/10.1038/srep33860.

    Article  CAS  Google Scholar 

  13. Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y, et al. Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer [Internet]. 2019;132(December 2018):28–35. https://doi.org/10.1016/j.lungcan.2019.03.025.

  14. Jia TY, Xiong JF, Li XY, Yu W, Xu ZY, Cai XW, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol. 2019;241

    Google Scholar 

  15. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res. 2017;77(14):3922–30.

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Luo T, Ding C, Huang Q, Guan Z, Zhang H. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: combining radiomics with machine learning. Med Phys. 2020;47(8):3458–66.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019;53(3)

    Google Scholar 

  18. Mei D, Luo Y, Wang Y, Gong J. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses. Cancer Imaging. 2018;18(1):1–9.

    Article  Google Scholar 

  19. Kim Y, Paeng JC, Park YS, Cheon GJ, Lee DS, Chung J-K, et al. Relation of EGFR mutation status to metabolic activity in localized lung adenocarcinoma and its influence on the use of FDG PET/CT parameters in prognosis. Am J Roentgenol [Internet]. 2018 Jun 1 [cited 2020 Oct 1];210(6):1346–51. Available from: https://www.ajronline.org/doi/10.2214/AJR.17.18916.

  20. Zhang J, Zhao X, Zhao Y, Zhang J, Zhang Z, Wang J, et al. Value of pre-therapy 18F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2020;47(5):1137–46.

    Article  CAS  PubMed  Google Scholar 

  21. Song Z, Liu T, Shi L, Yu Z, Shen Q, Xu M, et al. The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2020.

    Google Scholar 

  22. Yoon J, Suh YJ, Han K, Cho H, Lee HJ, Hur J, et al. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Thorac Cancer. 2020;11(4):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang C, Hobbs B, Amer A, Li X, Behrens C, Canales JR, et al. Development of an immune-pathology informed Radiomics model for non-small cell lung cancer. Sci Rep [Internet]. 2018;8(1):1–9. https://doi.org/10.1038/s41598-018-20471-5.

    Article  CAS  Google Scholar 

  24. Kadota K, Nitadori JI, Sima CS, Ujiie H, Rizk NP, Jones DR, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small Stage I lung adenocarcinomas. J Thorac Oncol [Internet]. 2015 May 30 [cited 2020 Oct 7];10(5):806–14. Available from: http://www.jto.org/article/S1556086415323935/fulltext.

  25. Shimada Y, Ishii G, Hishida T, Yoshida J, Nishimura M, Nagai K. Extratumoral vascular invasion is a significant prognostic indicator and a predicting factor of distant metastasis in non-small cell lung cancer. J Thorac Oncol [Internet]. 2010 Jul 1 [cited 2020 Oct 7];5(7):970–5. Available from: http://www.jto.org/article/S1556086415305402/fulltext.

  26. Saijo T, Ishii G, Ochiai A, Hasebe T, Yoshida J, Nishimura M, et al. Evaluation of extratumoral lymphatic permeation in non-small cell lung cancer as a means of predicting outcome. Lung Cancer [Internet]. 2007 Jan 1 [cited 2020 Oct 7];55(1):61–6. Available from: http://www.lungcancerjournal.info/article/S0169500206005265/fulltext.

  27. Khorrami M, Bera K, Leo P, Vaidya P, Patil P, Thawani R, et al. Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: multi-site study. Lung Cancer [Internet]. 2020;142(February):90–7. https://doi.org/10.1016/j.lungcan.2020.02.018.

  28. Lee G, Park H, Sohn I, Lee S, Song SH, Kim H, et al. Comprehensive computed tomography Radiomics analysis of lung adenocarcinoma for prognostication. Oncologist. 2018;23(7):806–13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Choe J, Lee SM, Do KH, Kim S, Choi S, Lee JG, et al. Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics. Eur Radiol. 2020;30(9):4952–63.

    Article  PubMed  Google Scholar 

  30. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11):1–25.

    Article  Google Scholar 

  31. Kim H, Mo Goo J, Hee Lee K, Kim YT, Park CM. Preoperative ct-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology. 2020;296(1):216–24.

    Article  PubMed  Google Scholar 

  32. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281(3):947–57.

    Article  PubMed  Google Scholar 

  33. Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts HJWL. Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS One. 2018;13(11):1–15.

    Article  Google Scholar 

  34. Gu Y, She Y, Xie D, Dai C, Ren Y, Fan Z, et al. A texture analysis–based prediction model for lymph node metastasis in stage IA lung adenocarcinoma. Ann Thorac Surg [Internet]. 2018;106(1):214–20. Available from: https://doi.org/10.1016/j.athoracsur.2018.02.026.

  35. Wang X, Zhao X, Li Q, Xia W, Peng Z, Zhang R, et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol. 2019;29(11):6049–58.

    Article  PubMed  Google Scholar 

  36. Yang X, Dong X, Wang J, Li W, Gu Z, Gao D, et al. Computed tomography-based Radiomics signature: A potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule. Oncologist. 2019;24(11):1156–64.

    Article  Google Scholar 

  37. Zhong Y, Yuan M, Zhang T, Zhang YD, Li H, Yu TF. Radiomics approach to prediction of occult mediastinal lymph node metastasis of lung adenocarcinoma. Am J Roentgenol. 2018;211(1):109–13.

    Article  Google Scholar 

  38. Han S, Woo S, Suh CH, Kim YJ, Oh JS, Lee JJ. A systematic review of the prognostic value of texture analysis in 18F-FDG PET in lung cancer. Ann Nucl Med [Internet]. 2018;32(9):602–10. https://doi.org/10.1007/s12149-018-1281-9.

    Article  CAS  Google Scholar 

  39. Arshad MA, Thornton A, Lu H, Tam H, Wallitt K, Rodgers N, et al. Discovery of pre-therapy 2-deoxy-2- 18 F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2019;46(2):455–66.

    Article  CAS  PubMed  Google Scholar 

  40. Konert T, Everitt S, la Fontaine MD, van de Kamer JB, MacManus MP, Vogel W V., et al. Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? PLoS One [Internet]. 2020;15(2):1–20. Available from: https://doi.org/10.1371/journal.pone.0228793.

  41. Krarup MMK, Nygård L, Vogelius IR, Andersen FL, Cook G, Goh V, et al. Heterogeneity in tumours: validating the use of radiomic features on 18F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol [Internet]. 2020;144:72–8. https://doi.org/10.1016/j.radonc.2019.10.012.

  42. Yang B, Zhong J, Zhong J, Ma L, Li A, Ji H, et al. Development and validation of a Radiomics nomogram based on 18F-Fluorodeoxyglucose positron emission tomography/computed tomography and Clinicopathological factors to predict the survival outcomes of patients with non-small cell lung cancer. Front Oncol. 2020;10(July):1–14.

    Google Scholar 

  43. Nie P, Yang G, Wang N, Yan L, Miao W, Duan Y, et al. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma. Eur J Nucl Med Mol Imaging 2020.

    Google Scholar 

  44. Tau N, Stundzia A, Yasufuku K, Hussey D, Metser U. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non–small cell lung cancer on FDG PET images. Am J Roentgenol [Internet]. 2020 Jul 1 [cited 2020 Oct 7];215(1):192–7. Available from: https://www.ajronline.org/doi/10.2214/AJR.19.22346.

  45. Mattonen SA, Davidzon GA, Bakr S, Echegaray S, Leung ANC, Vasanawala M, et al. [18F] FDG positron emission tomography (PET) tumor and penumbra Imaging features predict recurrence in non-small cell lung cancer. Tomogr (Ann Arbor, Mich). 2019;5(1):145–53.

    Google Scholar 

  46. Mattonen SA, Davidzon GA, Benson J, Leung ANC, Vasanawala M, Horng G, et al. Bone marrow and tumor radiomics at 18F-FDG PET/CT: impact on outcome prediction in non–small cell lung cancer. Radiology. 2019;293(2):451–9.

    Article  PubMed  Google Scholar 

  47. Carvalho S, Leijenaar RTH, Troost EGC, Van Timmeren JE, Oberije C, Van Elmpt W, et al. 18FDG-PET-Radiomics of metastatic lymph nodes and primary tumour in NSCLC - a prospective externally validated study. PLoS One. 2018;Submitted(1):1–16.

    Google Scholar 

  48. Chetan MR, Gleeson F V. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol. 2020.

    Google Scholar 

  49. Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, et al. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat. 2018;17(619):1–14.

    Google Scholar 

  50. Song J, Shi J, Dong D, Fang M, Zhong W, Wang K, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res. 2018;24(15):3583–92.

    Article  CAS  PubMed  Google Scholar 

  51. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.

    Article  CAS  PubMed  Google Scholar 

  52. Lou B, Doken S, Zhuang T, Wingerter D, Gidwani M, Mistry N, et al. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit Heal. 2019;1(3):1–25.

    Google Scholar 

  53. Tunali I, Gray JE, Qi J, Abdalah M, Jeong DK, Guvenis A, et al. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer [Internet]. 2019;129(November 2018):75–9. Available from: https://doi.org/10.1016/j.lungcan.2019.01.010.

  54. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging. 2020;47(5):1168–82.

    Article  CAS  PubMed  Google Scholar 

  55. Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, Faivre-Finn C, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020.

    Google Scholar 

  56. Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. Eur Radiol. 2015;25(4):932–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Radiological Society of North America. Quantitative Imaging Biomarkers Alliance [Internet]. [cited 2020 Oct 15]. Available from: https://www.rsna.org/en/research/quantitative-imaging-biomarkers-alliance.

  58. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. Radiology [Internet]. 2016 Dec 21 [cited 2020 Oct 15];295(2):328–38. Available from: http://arxiv.org/abs/1612.07003.

  59. Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell [Internet]. 2020 Mar 1 [cited 2020 Oct 15];2(2):e200029. Available from: https://doi.org/10.1148/ryai.2020200029.

  60. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J, et al. Radiomics: The bridge between medical imaging and personalized medicine [Internet]. Vol. 14, Nature Reviews Clinical Oncology. Nature Publishing Group; 2017 [cited 2020 Oct 15]. p. 749–62. Available from: https://www.nature.com/articles/nrclinonc.2017.141

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Horst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horst, C., O’Shea, R., Goh, V. (2022). Lung Cancer Characterization and Prognosis: The Role of Artificial Intelligence. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_44

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics