Skip to main content

Artificial Intelligence-Based Image Enhancement and Reconstruction in Computed Tomography Imaging

  • Chapter
  • First Online:
Artificial Intelligence in Cardiothoracic Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 1659 Accesses

Abstract

Implementation of artificial intelligence (AI), deep learning (DL), and neural networks (NN) to medical CT imaging holds great promise to improve many challenging computation tasks. The progress made with modern technology has significantly aided in the development of AI technology, and its reduction in cost has made it readily available to the public at large. Applications of NNs to CT images have demonstrated its ability to assist the diagnostic performance of a trained physician through a variety of techniques and approaches. These AI-based computational tasks can be grouped into two broad categories: image enhancement and image reconstruction. Image enhancement with AI is the process of using the existing image to extract information or reduce erroneous information found within the image. Using AI to perform image reconstruction is a method to transform a series of images into another more comprehensive image. Here, we explore different applications of AI, DL, and NNs that address each of these two categories, various subcategories, and the specific approaches to solving their problem at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong F, Wilson N, Shadden SC. A deep-learning approach for direct whole-heart mesh reconstruction. arXiv Prepr. arXiv2102.07899, 2021.

    Google Scholar 

  2. Koo HJ, et al. Automated segmentation of left ventricular myocardium on cardiac computed tomography using deep learning. Korean J Radiol. 2020;21(6):660.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim H, Dewaraja YK, Fessler JA. Joint low-count PET/CT segmentation and reconstruction with paired variational neural networks. Med Imaging 2020 Phys Med Imaging. 2020;11312:113120U.

    Google Scholar 

  4. Ye M, et al. PC-U net: learning to jointly reconstruct and segment the cardiac walls in 3D from CT data. arXiv Prepr. arXiv2008.08194, 2020.

    Google Scholar 

  5. Symons R, et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging. 2017:33(8). https://doi.org/10.1007/s10554-017-1104-4.

  6. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289(2):172656. https://doi.org/10.1148/radiol.2018172656.

    Article  Google Scholar 

  7. Lyu T, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network. Med Image Anal. 2021;70:102001.

    Article  PubMed  Google Scholar 

  8. Abascal JFPJ, et al. “Material decomposition in spectral CT using deep learning: A Sim2Real transfer approach,” IEEE Access. 2021;9:25632–47.

    Google Scholar 

  9. Leuschner J, Schmidt M, Baguer DO, Maaß P. The lodopab-ct dataset: a benchmark dataset for low-dose ct reconstruction methods. arXiv Prepr. arXiv1910.01113, 2019.

    Google Scholar 

  10. Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017;44(10):e360–75.

    Article  CAS  PubMed  Google Scholar 

  11. Choe J, et al. Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology. 2019;292(2):365–73.

    Article  PubMed  Google Scholar 

  12. Patwari M, Gutjahr R, Raupach R, Maier A. Measuring CT reconstruction quality with deep convolutional neural networks. In: International workshop on machine learning for medical image reconstruction. Cham: Springer; 2019. p. 113–24.

    Chapter  Google Scholar 

  13. Li S, et al. Blind CT image quality assessment via deep learning strategy: initial study,” in Medical Imaging 2018: Image Perception, Observer Performance, and Technology Assessment. Int J Opt Photonics. 2018;10577:44.

    Google Scholar 

  14. Ravishankar S, Ye JC, Fessler JA. Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc IEEE. 2019;108(1):86–109.

    Article  Google Scholar 

  15. Willemink MJ, Noël PB. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur Radiol. 2019;29(5):2185–95.

    Article  PubMed  Google Scholar 

  16. Kambadakone A. Artificial intelligence and CT image reconstruction: potential of a new era in radiation dose reduction. J Am Coll Radiol. 2020;17(5):649–51.

    Article  PubMed  Google Scholar 

  17. Cong W, Xi Y, De Man B, Wang G. Monochromatic image reconstruction via machine learning. Mach Learn Sci Technol. 2021;2(2):025032.

    Article  Google Scholar 

  18. Zhang W, et al. Dual-energy CT reconstruction from dual quarter scans. arXiv Prepr. arXiv2012.11374, 2020.

    Google Scholar 

  19. Wu Z, Yang T, Li L, Zhu Y. Hierarchical convolutional network for sparse-view X-ray CT reconstruction. Comput Imaging IV. 2019;10990:109900V.

    Google Scholar 

  20. Podgorsak AR, Shiraz Bhurwani MM, Ionita CN. CT artifact correction for sparse and truncated projection data using generative adversarial networks. Med Phys. 2021;48(2):615–26.

    Article  PubMed  Google Scholar 

  21. Lossau T, Nickisch H, Wissel T, Morlock M, Grass M. Learning metal artifact reduction in cardiac CT images with moving pacemakers. Med Image Anal. 2020;61:101655.

    Article  Google Scholar 

  22. Wei R, et al. Real-time tumor localization with single x-ray projection at arbitrary gantry angles using a convolutional neural network (CNN). Phys Med Biol. 2020;65(6):65012.

    Article  Google Scholar 

  23. Hu D, et al. Hybrid-domain neural network processing for sparse-view CT reconstruction. IEEE Trans Radiat Plasma Med Sci. 2020;5(1):88–98.

    Article  Google Scholar 

  24. Zhang Q, Hu Z, Jiang C, Zheng H, Ge Y, Liang D. Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging. Phys Med Biol. 2020;65(15):155010.

    Article  PubMed  Google Scholar 

  25. Wu D, Kim K, El Fakhri G, Li Q. Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging. 2017;36(12):2479–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging. 2018;37(6):1289–96.

    Article  PubMed  Google Scholar 

  27. Chen H, et al. LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans Med Imaging. 2018;37(6):1333–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen C, Gonzalez Y, Chen L, Jiang SB, Jia X. Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning. IEEE Trans Med Imaging. 2018;37(6):1430–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. He J, et al. Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction. IEEE Trans Med Imaging. 2018;38(2):371–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Pourmorteza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holmes, T.W., Pourmorteza, A. (2022). Artificial Intelligence-Based Image Enhancement and Reconstruction in Computed Tomography Imaging. In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial Intelligence in Cardiothoracic Imaging. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-030-92087-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92087-6_15

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-92086-9

  • Online ISBN: 978-3-030-92087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics