Skip to main content

Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function

  • Chapter
  • First Online:
Long Noncoding RNA

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1363))

Abstract

While long non-coding RNAs play key roles in disease and development, few structural studies have been performed to date for this emerging class of RNAs. Here, we provide a brief review of functional studies of long non-coding RNAs, followed by a review of previous structural studies of long non-coding RNAs. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small angle X-ray scattering, X-ray crystallography and cryogenic electron microscopy (cryo-EM). Next, we describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM. Finally, we discuss of the roles of long non-coding RNAs in the cell and how structure-function relationships might be used to elucidate further understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  2. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  4. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  5. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470:284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, Reinberg D (2014) Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell 53:290–300

    Article  CAS  PubMed  Google Scholar 

  8. Heard E, Mongelard F, Arnaud D, Chureau C, Vourc'h C, Avner P (1999) Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci U S A 96:6841–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, Sanulli S, Chow J, Schulz E, Picard C, Kaneko S, Helin K, Reinberg D, Stewart AF, Wutz A, Margueron R, Heard E (2014) Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53:301–316

    Article  PubMed  Google Scholar 

  10. Boumil RM, Lee JT (2001) Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10:2225–2232

    Article  CAS  PubMed  Google Scholar 

  11. Davidovich C, Zheng L, Goodrich KJ, Cech TR (2013) Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR, Lee JT, Cech TR (2015) Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 57:552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  14. Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  17. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Numata K, Kanai A, Saito R, Kondo S, Adachi J, Wilming LG, Hume DA, Hayashizaki Y, Tomita M, R.G. Group, G.S.L. Members (2003) Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 13:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Gatta GD, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, F. Consortium, R.G.E.R. Group, G. Genome Science (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  20. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Charles Richard JL, Eichhorn PJA (2018) Platforms for investigating LncRNA functions. SLAS Technol 23:493–506

    Article  PubMed  PubMed Central  Google Scholar 

  23. Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425:3731–3746

    Article  CAS  PubMed  Google Scholar 

  24. Westhof E (2015) Twenty years of RNA crystallography. RNA 21:486–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reyes FE, Garst AD, Batey RT (2009) Strategies in RNA crystallography. Methods Enzymol 469:119–139

    Article  CAS  PubMed  Google Scholar 

  26. Pyle AM (2016) Group II intron self-splicing. Annu Rev Biophys 45:183–205

    Article  CAS  PubMed  Google Scholar 

  27. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serganov A, Patel DJ (2012) Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 41:343–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Jones CP, Ferre-D'Amare AR (2014) Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochim Biophys Acta 1839:1020–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jobe A, Liu Z, Gutierrez-Vargas C, Frank J (2019) New insights into ribosome structure and function. Cold Spring Harb Perspect Biol 11:1–17

    Google Scholar 

  31. Sanbonmatsu KY (2012) Computational studies of molecular machines: the ribosome. Curr Opin Struct Biol 22:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanbonmatsu KY (2019) Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 55:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar A, Clerici M, Muckenfuss LM, Passmore LA, Jinek M (2019) Mechanistic insights into mRNA 3′-end processing. Curr Opin Struct Biol 59:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casanal A, Shakeel S, Passmore LA (2019) Interpretation of medium resolution cryoEM maps of multi-protein complexes. Curr Opin Struct Biol 58:166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fica SM, Nagai K (2017) Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 24:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fica SM (2020) Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr Opin Struct Biol 65:139–148

    Article  CAS  PubMed  Google Scholar 

  37. Wilkinson ME, Charenton C, Nagai K (2020) RNA splicing by the spliceosome. Annu Rev Biochem 89:359–388

    Article  CAS  PubMed  Google Scholar 

  38. Smathers CM, Robart AR (2019) The mechanism of splicing as told by group II introns: ancestors of the spliceosome. Biochim Biophys Acta Gene Regul Mech 1862:194390

    Article  CAS  PubMed  Google Scholar 

  39. Xue Z, Hennelly S, Doyle B, Gulati AA, Novikova IV, Sanbonmatsu KY, Boyer LA (2016) A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 64:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim DN, Thiel BC, Mrozowich T, Hennelly SP, Hofacker IL, Patel TR, Sanbonmatsu KY (2020) Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 11:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B, Colognori D, Lessing D, Payer B, Boukhali M, Haas W, Lee JT (2015) A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science (New York, NY) 349:282–294

    Google Scholar 

  42. Lee JT, Jaenisch R (1997) The (epi)genetic control of mammalian X-chromosome inactivation. Curr Opin Genet Dev 7:274–280

    Article  CAS  PubMed  Google Scholar 

  43. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife 2:e01749

    Article  PubMed  PubMed Central  Google Scholar 

  48. Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa S, Hirose T (2012) Paraspeckle nuclear bodies–useful uselessness? Cell Mol Life Sci 69:3027–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 106:2525–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wan Y, Qu K, Ouyang Z, Chang HY (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 8:849–869

    Article  CAS  PubMed  Google Scholar 

  53. Ouyang Z, Snyder MP, Chang HY (2013) SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res 23:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48:169–181

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    Article  CAS  PubMed  Google Scholar 

  56. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700

    Article  CAS  PubMed  Google Scholar 

  57. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705

    Article  CAS  PubMed  Google Scholar 

  58. Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40:5034–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, Chang HY, Akhtar A (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51:156–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Somarowthu S, Legiewicz M, Chillon I, Marcia M, Liu F, Pyle AM (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Chang HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67

    Article  CAS  PubMed  Google Scholar 

  67. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  CAS  PubMed  Google Scholar 

  68. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Article  CAS  PubMed  Google Scholar 

  69. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    Article  CAS  PubMed  Google Scholar 

  70. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  PubMed  Google Scholar 

  71. Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304

    Article  CAS  PubMed  Google Scholar 

  72. Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  CAS  PubMed  Google Scholar 

  73. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35:4809–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–415

    Article  CAS  PubMed  Google Scholar 

  76. Montange RK, Batey RT (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172–1175

    Article  CAS  PubMed  Google Scholar 

  77. Gilbert SD, Rambo RP, Van Tyne D, Batey RT (2008) Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15:177–182

    Article  CAS  PubMed  Google Scholar 

  78. Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT (2010) Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18:787–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Montange RK, Batey RT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37:117–133

    Article  CAS  PubMed  Google Scholar 

  80. Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogan JJ, Noller HF (1980) Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8:2275–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    Article  CAS  PubMed  Google Scholar 

  82. Noller HF, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Waese CR (1981) Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res 9:6167–6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    Article  CAS  PubMed  Google Scholar 

  84. Novikova IV, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination for long non-coding RNAs. Methods 63:170–177

    Google Scholar 

  85. Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G (2010) Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev 24:2543–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu B, Yang WH, Gerin I, Hu CD, Hammer GD, Koenig RJ (2009) Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol Cell Biol 29:1719–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Colley SM, Iyer KR, Leedman PJ (2008) The RNA coregulator SRA, its binding proteins and nuclear receptor signaling activity. IUBMB Life 60:159–164

    Article  CAS  PubMed  Google Scholar 

  88. Huet T, Miannay FA, Patton JR, Thore S (2014) Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model. PLoS One 9:e94610

    Article  PubMed  PubMed Central  Google Scholar 

  89. McKay DB, Xi L, Barthel KK, Cech TR (2014) Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA. J Mol Biol 426:1766–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arieti F, Gabus C, Tambalo M, Huet T, Round A, Thore S (2014) The crystal structure of the split end protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs. Nucleic Acids Res 42:6742–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu F, Somarowthu S, Pyle AM (2017) Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13:282–289

    Article  PubMed  PubMed Central  Google Scholar 

  92. Uroda T, Anastasakou E, Rossi A, Teulon JM, Pellequer JL, Annibale P, Pessey O, Inga A, Chillon I, Marcia M (2019) Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol Cell 75:982–995.e989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Borodavka A, Singaram SW, Stockley PG, Gelbart WM, Ben-Shaul A, Tuma R (2016) Sizes of long RNA molecules are determined by the branching patterns of their secondary structures. Biophys J 111:2077–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duszczyk MM, Zanier K, Sattler M (2008) A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res 36:7068–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kappel K, Zhang K, Su Z, Watkins AM, Kladwang W, Li S, Pintilie G, Topkar VV, Rangan R, Zheludev IN, Yesselman JD, Chiu W, Das R (2020) Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat Methods 17:699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges generous support by the LANL LDRD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karissa Sanbonmatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanbonmatsu, K. (2022). Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function. In: Carpenter, S. (eds) Long Noncoding RNA. Advances in Experimental Medicine and Biology, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-92034-0_3

Download citation

Publish with us

Policies and ethics