Skip to main content

Antimicrobial Potential of Seaweeds: Critical Review

  • Chapter
  • First Online:
Sustainable Global Resources Of Seaweeds Volume 1

Abstract

In coastal region, abundant marine organisms such as marine algae which are rich source of structurally unique natural products with Pharmacological and biological potentials. Encouraged by the idea of “Drugs from the Sea”, chemists and biologists have identified lots of bioactive compounds with novel structures from the rich marine bio-resource in the recent 50 years. Seaweeds are one of the major producers of marine ecosystem, found almost in all part of the coastal regions around the globe. With increasing interest in seaweeds as prophylactic and/or therapeutic agents in aquaculture. Recently, investigation on antimicrobials are gaining more importance. The detailed information on the bioactivity of seaweed extracts against aquaculture pathogens- bacteria, fungi, viruses and protozoa has been consolidated from Indian coast which are potent multidrug resistant antibiotics that pave way to find alternative drugs and promising source of sustainable aquaculture agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHPND:

Acute hepatopancreatic necrosis disease

CAA:

Coastal Aquaculture Authority

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

MAPs:

Marine algae polysaccharides

PLs:

Post larvae

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated Fatty acids

WSSV:

White spot syndrome virus

References

  • Aftab Uddin S, Siddique MAM, Habib A, Akter S, Hossen S, Tanchangya P, Mamun Abdullah A (2021) Effects of seaweeds extract on growth, survival, antibacterial activities, and immune responses of Penaeus monodon against Vibrio parahaemolyticus. Ital J Anim Sci 20(1):243–255

    CAS  Google Scholar 

  • Akhilamole MA, Noorjahan A, Raghuraman R, Aiyamperumal B, Anantharaman P (2019a) Alternate supplemented diets as spent seaweed on Nile tilapia, Oreochromis niloticus performance. Indian Hydrobiol 18

    Google Scholar 

  • Akhilamole MA, Noorjahan A, Mahesh S, Aiyamperumal B, Anantharaman P (2019b) Nutritive assessment of spending seaweed and fermented spent seaweed Sargassum wightii. Adv Biores 10(4/5)

    Google Scholar 

  • Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25:407–424

    CAS  Google Scholar 

  • Ambika S, Sujatha K, Balakrishnan K (2014) Antifungal activity of seaweed extract against Alternaria porri in onion. In: National Seminar on Algae for sustainable agricultural production. Madurai, p 87

    Google Scholar 

  • Arnold TM, Targett NM (1998) Quantifying in situ rates of phlorotannin synthesis and polymerization in marine brown algae. J Chem Ecol 24:577–595

    CAS  Google Scholar 

  • Athukorala LKW, Shahidi MS, Heu HT, Kim JS, Jeon YJ (2003) Antioxidant efficacy of extracts of an edible red alga (Grateloupia wlicina) in linoleic acid and fish oil. J Food Lipid 10:313–327

    CAS  Google Scholar 

  • Attaway DH, Zaborsky OR (1993) Marine biotechnology. Pharm Bioac Nat Prod 1(11):63–67.

    Google Scholar 

  • Awad NE (2004) Bioactive brominated diterpenes from the marine red alga Jania rubens (L.) Lamx. Phytother Res 18:275–279

    CAS  PubMed  Google Scholar 

  • Azad IS, Rajendran KV, Rajan JJS, Vijayan KK, Santiago TC (2001) Virulence and histopathology of Aeromonas hydrophila (Sah 93) in experimentally infected tilapia, Oreochromis mossambicus. J Aquac Tropics 16:265–275

    Google Scholar 

  • Balasubramanian G, Sudhakaran R, Syed Musthaq S, Sarathi M, Sahul Hameed AS (2006) Studies on the inactivation of white spot syndrome virus of shrimp by physical and chemical treatments, and seaweed extracts tested in marine and freshwater animal 640 models. J Fish Dis 29:569–572

    CAS  PubMed  Google Scholar 

  • Ballesteros E, Martin D, Uriz MJ (1992) Biological activity of extracts from some Mediterranean macrophytes. Bot Mar 35:481–485

    Google Scholar 

  • Bansemir A, Just N, Michalik M, Lindequist U, Lalk M (2004) Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 1:463–467

    CAS  PubMed  Google Scholar 

  • Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84

    Google Scholar 

  • Bernard P, Clement R (1983) Bringing to evidence anti-biotic substances from Posidonia oceanica. Rev Int Ocean ogr Mkd 70(71):33–37

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    CAS  PubMed  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1992) Vitamins and fine chemicals from micro algae. In: Micro algal biotechnology. Cambridge University Press, Great Britain, p 179

    Google Scholar 

  • Bourgougnon N, Lahaye M, Chermann JC, Kornprobst JM (1993) Composition and antiviral activities of a sulphated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales). Bioorgan Med Chem Lett 3:1141–1146

    CAS  Google Scholar 

  • Bourgougnon N, Roussakis C, Kornprobst JM, Lahaye M (1994) Effects in vitro of sulphated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales) on a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Cancer Lett 85:87–92

    CAS  PubMed  Google Scholar 

  • Bulfon C, Volpatti D, Galeotti M (2015) Current research on the use of plant derived products in farmed fish. Aquac Res 46(3):513–551

    Google Scholar 

  • Cai J, Feng J, Xie S, Wang F, Xu Q (2014) Laminaria japonica extract, an inhibitor of Clavibater michiganense subsp. sepedonicum. PLoS One 9(4):e94329

    PubMed  PubMed Central  Google Scholar 

  • Cavallo RA, Acquaviva M, Stabili L, Cecere E, Petrocelli A, Narracci M (2013) Antibacterial activity of marine macroalgae against fish pathogenic vibrio species. Cent Eur J Biol 8:646–653

    CAS  Google Scholar 

  • Chen WY, Ng TH, Wu JH, Chen JW, Wang HC (2018) Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease. Sci Rep 7:9395

    Google Scholar 

  • Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT 41:1067–1072

    CAS  Google Scholar 

  • Chotigeat W, Tongsupa S, Supamataya K, Phongdara A (2004) Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture 233:23–30

    CAS  Google Scholar 

  • Chowdhury AA, Uddin MS, Vaumi S, Asif AA (2015) Aqua drugs and chemicals used in aquaculture of Zakigonj upazilla, Sylhet. Asian J Med Biol Res 1:336–349

    Google Scholar 

  • Coastal Aquaculture Authority of India (2014) List of antibiotics and other pharmacologically active substances banned for using in shrimp aquaculture. Coastal Aquaculture Authority of India, New Delhi

    Google Scholar 

  • Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res 17:205–220

    CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    CAS  Google Scholar 

  • De Felicio R (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769

    PubMed  Google Scholar 

  • De Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CI, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Google Scholar 

  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419–6423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaneesh KV, Gopi M, Noushad KM, Ganeshamurthy R, Kumar TTA, Balasubramanian T (2012) Determination of metal levels in thirteen fish species from Lakshadweep Sea. Bull Environ Contam Toxicol 88:69–73

    CAS  PubMed  Google Scholar 

  • Duan XJ, Zhang WW, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 95:37–43

    CAS  Google Scholar 

  • Dubber D, Harder T (2008) Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations. Aquaculture 274:196–200

    Google Scholar 

  • El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18:1–25

    PubMed  Google Scholar 

  • Ely R, Supriya T, Naik CG (2004) Antimicrobial activity of marine organisms collected off the coast of South East India. J Exp Biol Ecol 309:121–127

    Google Scholar 

  • Engel S, Puglisi MP, Jensen PR, Fenical W (2006) Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and saprophytes. Mar Biol 149:991–1002

    Google Scholar 

  • Fang HY, Chokkalingam U, Chio SF, Hwang TL, Chen SL, Wang WL, Sheu JH (2015) Bioactive chemical constituents from the brown alga Homoeostrichus formosana. Int J Mol Sci 16:736–746

    CAS  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture. Available online: http://203.187.160.133:9011/www.fao.org/c3pr90ntc0td/3/i9540en/i9540en.pdf. Accessed on 27 Feb 2020

  • Fenical W, Paul VJ (1984) Algae in medicine and pharmacology. Hydrobiologia 116(117):135–170

    Google Scholar 

  • Flegel TW (2006) Detection of major Penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258:1–33

    Google Scholar 

  • Freile-Pelegrin Y, Morales JL (2004) Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot Mar 47(2):140–146

    Google Scholar 

  • Ganeshamurthy R, Kumar TTA, Dhayanithi NB (2012) Effect of secondary metabolites of the seaweed (Halimeda micronesia) at Lakshadweep islands against aquatic pathogens. Int J Pharma Bio Sci 3:B213–B220

    Google Scholar 

  • Garg HS (1993) Bioactive substance in marine algae, marine biotechnology. Plenum press, New York, pp 1–8

    Google Scholar 

  • Genovese G, Faggio C, Gugliandolo C, Torre A, Spanò A, Morabito M, Maugeri TL (2012) In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the straits of Messina against pathogens relevant in aquaculture. Mar Environ Res 73:1–6

    CAS  PubMed  Google Scholar 

  • Gerwick WH, Fenical W, Norris JN (1985) Chemical variation in the tropical seaweed Stypopodium zonale (Dictyotaceae). Phytochemistry, Londres 24:1279–1283

    CAS  Google Scholar 

  • Ghosh P, Adhikari U, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2004) In vitro anti-herpetic activity of sulphated polysaccharide fractions from Caulerpa racemosa. Phytochemistry 65:3151–3157

    CAS  PubMed  Google Scholar 

  • Gonzalez del val A, Platas G, Basilio A (2001a) Screening of antimicrobial activities of red, green and brown macro algae from Gran Canaria (Canary Islands, Spain). Int Microbiol 4:35–40

    CAS  PubMed  Google Scholar 

  • Gonzalez del Val A, Platas G, Basilo A, Cabello A, Gorrochategui J, Suay I, Vicente F, Portillo E, Jimenez del Rico M, Garcia Reina G, Pelez F (2001b) Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int J Microbiol 4:35–40

    Google Scholar 

  • Gorban E, Kuprash L, Gorban N (2003) Spirulina: perspectives of the application in medicine. LikSprava 7:100–110

    Google Scholar 

  • Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    CAS  Google Scholar 

  • Guihéneuf F, Gietl A, Stengel DB (2018) Temporal and spatial variability of mycosporine-like amino acids and pigments in three edible red seaweeds from western Ireland. J Appl Phycol 30:2573–2586

    Google Scholar 

  • Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7:1894–1898

    CAS  Google Scholar 

  • Gupta S, Abu-Ghannam N (2011a) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Tech 22:315–326

    CAS  Google Scholar 

  • Gupta S, Abu-Ghannam N (2011b) Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality of foods. Innov Food Sci Emerg 12:600–609

    CAS  Google Scholar 

  • Harbourne JB (1994) The flavonoids: advances in research since 1986. Chapman and Hall, London

    Google Scholar 

  • Haslam E (1989) Plant polyphenols: vegetable tannins revisited. Cambridge University Press, Cambridge

    Google Scholar 

  • Hellio C, De La Broise D, Dufosse L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52(3):231–247

    CAS  PubMed  Google Scholar 

  • Hellio C, Marechal JP, Veron B, Bremer G, Clare AS, Le Gal Y (2004) Seasonal variation of antifouling activity of marine from the Brittany coast (France). Mar Biotechnol 6:67–82

    CAS  Google Scholar 

  • Hemat RAS (2007) Fat and muscle dysfunction. In: Hemat RAS (ed) Andropathy. Urotext, Dublin, pp 83–85

    Google Scholar 

  • Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623

    CAS  PubMed  Google Scholar 

  • Hidayat Y, Fuad F, Nurhidayati M (2018) Implementation of economic democracy principle in Islamic banking policies through Financial Services Authority (FSA) in Indonesia. At-Taradhi J Stu Eko 8(2):132–154

    Google Scholar 

  • Hierholtzer A, Chatellard L, Kierans M, Akunna JC, Collier PJ (2014) The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J Appl Microbiol 114:964–973

    Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • Holmström K, Gräslund S, Wahlström A, Poungshompoo S, Bengtsson BE, Kautsky N (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38:255–266

    Google Scholar 

  • Hornsey I, Hide D (1985) The production of antimicrobial compounds by British Marine Algae & variation of antimicrobial activity with algal generation. Br Phycol J 20:21–25

    Google Scholar 

  • Huang J, Liu Y, Wang X (2008) Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J Hazard Mater 160:382–387

    CAS  PubMed  Google Scholar 

  • Hudson JB, Kim JH, Lee MK, De Wreede RE, Hong YK (1999) Antiviral compounds in extracts of Korean seaweeds: evidence for multiple activities. J Appl Phycol 10:427–434

    Google Scholar 

  • Ibtissam C, Hassane R, Martinez-Lopez J, Dominguez Seglar JF, Gomez Vidal JA, Hassan B, Mohamed K (2009) Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. Afr J Biotechnol 8(7):1258–1262

    Google Scholar 

  • Immanuel G, Sivagnanavelmurugan M, Balasubramanian V, Palavesam A (2010) Effect of hot water extracts of brown seaweeds Sargassum sp. on growth and resistance to white spot syndrome virus in shrimp Penaeus monodon postlarvae. Aquac Res 41:545–553

    Google Scholar 

  • Immanuel G, Sivagnanavelmurugan M, Balasubramanian V, Palavesam A (2012) Sodium alginate from Sargassum wightii retards mortalities in Penaeus monodon postlarvae challenged with white spot syndrome virus. Dis Aquat Org 99:187–196

    CAS  Google Scholar 

  • Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265

    PubMed  PubMed Central  Google Scholar 

  • Jia FY, Greenfield MD, Collins RD (2000) Genetic variance of sexually selected traits in axmoths: maintenance by genotype × environment interaction. Evolution 54:953–967

    CAS  PubMed  Google Scholar 

  • Jiang H-F, Liu X-L, Chang Y-Q, Liu M-T, Wang G-X (2013) Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol 35:86–91

    Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 2013(61):4667–4675

    Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    CAS  PubMed  Google Scholar 

  • Kamaraj C, Deepak P, Balasubramani G, Karthi S, Arul D, Aiswarya D, Amutha V, Vimalkumar E, Mathivanan D, Suseem SR, Chanthini KMP, Senthil-Nathan S (2018) Target and non-target toxicity of fern extracts against mosquito vectors and beneficial aquatic organisms. Ecotoxicol Environ Saf 161:221–230

    CAS  PubMed  Google Scholar 

  • Kandhasamy M, Arunachalam KD (2008) Evaluation of in vitro antibacterial property of seaweeds of southeast coast of India. Afr J Biotechnol 7:1958–1961

    Google Scholar 

  • Kanjana K, Radtanatip T, Asuvapongpatana S, Withyachumnarnkul B, Wongprasert K (2011) Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 30:389–396

    PubMed  Google Scholar 

  • Karabay-Yavasoglu NU, Sukatar A, Ozdemir G, Horzum Z (2007) Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytother Res 21:153–156

    CAS  PubMed  Google Scholar 

  • Karthikaidevi G, Manivannan K, Thirumaran G, Anantharaman P, Balasubaramanian T (2009) Antibacterial properties of selected green seaweeds from Vedalai Coastal Waters; Gulf of Mannar marine biosphere reserve. Glob J Pharmacol 3(2):107–112

    Google Scholar 

  • Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G (2015) Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): an analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar Drugs 13:5606–5628

    PubMed  PubMed Central  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14

    Google Scholar 

  • Khallil AM, Daghman IM, Fady AA (2015) Antifungal potential in crude extracts of five selected brown seaweeds collected from the Western Libya Coast. J Microbiol Creat 1(1):103

    Google Scholar 

  • Khoa LV, Hatai K, Aoki T (2004) Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J Fish Dis 27(9):507–515

    CAS  PubMed  Google Scholar 

  • Kibenge FSB, Godoy MG, Fast M, Workenhe S, Kibenge MJT (2012) Counter measures against viral diseases of farmed fish. Antivir Res 95:257–281

    CAS  PubMed  Google Scholar 

  • Klesius PH, Shoemaker CA, Evans JJ (2000) Vaccination. A health management practice for preventing diseases in tilapia and other cultured fish. 5th Int symposium on tilapia aquaculture in the 21st century, Brazil 2:558–564

    Google Scholar 

  • Klongklaew N, Praiboon J, Tamtin M, Srisapoome P (2020) Antibacterial and antiviral activities of local thai green macroalgae crude extracts in pacific white shrimp (Litopenaeus vannamei) Mar. Drugs 18:140

    CAS  Google Scholar 

  • Knowler D, Chopin T, Martínez-Espiñeira R, Neori A, Nobre A, Noce A, Reid G (2020) The economics of integrated multi-trophic aquaculture: where are we now and where do we need to go? Rev Aquac 8. 12(3):1579–1594.

    Google Scholar 

  • Kolanjinathan K, Stella D (2009) Antibacterial activity of ethanol extracts of seaweeds against human bacterial pathogens. Recent Res Sci Technol 1(1):20–22

    Google Scholar 

  • Kolanjinathan K, Ganesh P, Govindarajan M (2009) Antibacterial activity of ethanol extracts of seaweeds against fish bacterial pathogens. Eur Rev Med Pharmacol Sci 13:173–177

    CAS  PubMed  Google Scholar 

  • Kongrueng J, Yingkajorn M, Bunpa S, Sermwittayawong N, Singkhamanan K, Vuddhakul V (2015) Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in southern Thailand. J Fish Dis 38:957–966

    Google Scholar 

  • Kornprobst JM (2005) Substances naturelles d’origine marine, Tome 1: généralités, micro-organismes, algues. Editions Tec & Doc, Paris, p 598

    Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46

    Google Scholar 

  • Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56

    CAS  PubMed  Google Scholar 

  • Lavanya R, Veerappan N (2011) Antibacterial potential of six seaweeds collected from Gulf of Mannar of Southeast Coast of India. Adv Biol Res 5(1):38–44

    Google Scholar 

  • Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K (2017) Acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus strains maintain an antibacterial type VI secretion system with versatile effector repertoires. Appl Environ Microbiol 83:e00737–e00717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lightner DV (1993) Diseases of cultured Penaeid shrimps. In: McVey JP (ed) CRC Handbook of mariculture. CRC Press, Boca Raton, pp 393–486

    Google Scholar 

  • Lightner DV (2011) Virus diseases of farmed shrimp in the Western Hemisphere (the Americas). J Invertebr Pathol 106:110–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima-Filho JVM, Carvalho AFFU, Freitas SM, Melo VMM (2002) Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Braz J Microbiol 33:311–313

    Google Scholar 

  • Lopes G, Sousa C, Bernardo J, Andrade PB, Valentão P, Ferreres F, Mouga T (2011) Sterol profiles in 18 macroalgae of the portuguese coast. J Phycol 47:1210–1218

    CAS  PubMed  Google Scholar 

  • Lopes G, Sousa C, Valentão P, Andrade PB (2013) Sterols in algae and health. Bioactive compounds from marine foods. In: Hernández-Ledesma B, Herrero M (eds) Wiley, Hoboken 173–191

    Google Scholar 

  • Machado FLS et al (2011) Antileishmanial sesquiterpenes from the Brazilian red algae Laurencia dendroidea. Planta Méd Berlin 77:733–735

    CAS  Google Scholar 

  • Maheswaran ML, Padmavathy S, Gunalan B (2013) Screening and characterization of marine seaweeds and its antimicrobial potential against fish pathogens. Int J Fish Aquat Stud 1(788):1–13

    Google Scholar 

  • Manefield M, Welch M, Givskov M, Salmond GPC, Kjelleberg S (2001) Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 205:131–138

    CAS  PubMed  Google Scholar 

  • Manilal A, Sujith S, Selvin J, Seghal Kiran G, Shakir C (2009) In vivo antiviral activity of polysaccharide from the Indian green alga, Acrosiphonia orientalis (J. Agardh): potential implication in shrimp disease management. World J Fish Mar Sci 1:278–282

    CAS  Google Scholar 

  • Manilal A, Gezmu T, Merdekios B (2016) Evaluating the in vitro antagonism of secondary metabolites fractionated from the brown algae, Sargassum swartzii against Human Candida spp. Transl Biomed 7:1

    Google Scholar 

  • Manivannan K, Anantharaman P, Balasubramanian T (2011) Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac J Trop Biomed 1(2):114–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    CAS  PubMed  Google Scholar 

  • Marudhupandi T, Thankappan T, Kumar A (2013) Effect of fucoidan from Turbinaria ornata against marine ornamental fish pathogens. J Coast Life Med 1:282–286

    Google Scholar 

  • Mata L, Wright E, Owens L, Paul N, de Nys R (2013) Water-soluble natural products from seaweed have limited potential in controlling bacterial pathogens in fish aquaculture. J Appl Phycol 25:1963–1973

    CAS  Google Scholar 

  • Mayer AMS (2002) Current marine pharmacology contributions to new drug development in the biopharmaceutical industry. Pharmaceut News 9:479–482

    CAS  Google Scholar 

  • Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2007) Marine pharmacology in 2003–2004: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti- inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C: Toxicol Pharmacol 145:553–581

    Google Scholar 

  • Mayer AMS, Rodríguez AD, Roberto BGS, Hamann MT (2009) Marine pharmacology in 2005–2006: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti- inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta (BBA)-General Subjects 1790:283–308

    CAS  Google Scholar 

  • Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96

    CAS  Google Scholar 

  • Mohammed KA et al (2004) Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic hignaling in breast tumor cells. J Nat Prod Washington 67:2002–2007

    CAS  Google Scholar 

  • Morales JL, Cantillo-Ciau ZO, Sanchez-Molina I, Mena-Rejon GJ (2006) Screening of antibacterial and antifungal activities of six marine macroalgae from coasts of Yucatan peninsula. Pharm Biol 44:632–635

    Google Scholar 

  • Moreau J, Pesando D, Caram B (1984) Antifungal and antibacterial screening of Dictyotales from the French Mediterranean coast. Hydrobiologia 116(117):521–524

    Google Scholar 

  • Mtolera MSP, Semesi AK (1996) Antimicrobial activity of extracts from six green algae from Tanzania. Curr Trends Mar Bot Res East Afr Region:211–217

    Google Scholar 

  • Mise T, Ueda M, Yasumoto T (2011) Production of fucoxanthin rich powder from cladosiphon okamuranus. Advance Journal of Food Science and Technology 3(1):73–76.

    Google Scholar 

  • Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NBM, Othman F (2012) Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 130:376–382

    CAS  Google Scholar 

  • Naqvi SWA, Kamat SSY, Fernandes L, Reddy CVG, Bhakuni DS, Dhawan BN (1980) Screening of some marine plant from the Indian coast for biological activities. Bot Mar 24:51–55

    Google Scholar 

  • Ndhlala AR, Kasiyamhuru A, Mupure C, Chitindingu K, Benhura MA, Muchuweti M (2007) Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea. Food Chem 103:82–87

    CAS  Google Scholar 

  • Noga EJ (1996) Fish diseases diagnosis and treatment. Mosby, New York, pp 152–153

    Google Scholar 

  • Noga EJ (2010) Text book of fish disease: diagnosis and treatment, 2nd edn. Wiley and Blackwell, USA, p 519

    Google Scholar 

  • Noorjahan A, Aiyamperumal B, Anantharaman P (2019) Characterization and biochemical properties of Brown seaweed Sargassum tenerrimum (J.Aardh). Int J Pharm Biol Sci 9(2):350–357. https://doi.org/10.21276/ijpbs.2019.9.2.34

    Article  CAS  Google Scholar 

  • Noorjahan A, Mahesh S, Manupoori S, Aiyamperumal B, Anatharaman P, Muthukumaran M (2021) Efficacy of incorporating spent seaweeds in aqua feeds as a nutritional source. J Surv Fish Sci. 8(1) 31–45

    Google Scholar 

  • Osman MEH, Abushady AM, Elshobary ME (2010) In vitro screening of antimicrobial activity of extracts of some macroalgae collected from Abu-Qir bay Alexandria, Egypt. Afr J Biotechnol 9(12):7203–7208

    Google Scholar 

  • Padmakumar K, Ayyakannu K (1997) Seasonal variation of antibacterial and antifungal activities of the extracts of marine from Southern Coast of India. Bot Mar 40:507–515

    Google Scholar 

  • Pandithurai M, Murugesan S (2014) Evaluation of antifungal activity of seaweed extracts from marine brown alga Spatoglossum asperum. In: National Seminar on Algae for sustainable agricultural production. Madurai, Tamil Nadu, India, p 89

    Google Scholar 

  • Pangestuti R, Kim SK (2011) Neuroprotective effects of marine algae. Mar Drugs 9:803–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu RK, Swain GC (2009) Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India. Malays J Microbiol 5(2):128–131

    Google Scholar 

  • Pereira RC, Teixeira VL (1999) Sesquiterpenos da alga marinha Laurencia Lamouroux (Ceramiales, Rhodophyta). I. Significado ecológico, vol 22. Química Nova, São Paulo, pp 369–373, mai./jun

    Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Aschwin E, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pigmen K, Yip WH, Lim SJ, Mustapha WAW, Maskat MY, Said M, Pigmen K (2014) Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malays 2014(43):1345–1354

    Google Scholar 

  • Planas M, Pérez-Lorenzo M, Vázquez JA, Pintado J (2005) A model for experimental infections with Vibrio (Listonella) anguillarum in first feeding turbot (Scophthalmus maximus L.) larvae under hatchery conditions. Aquaculture 250:232–243

    Google Scholar 

  • Plumb JA (1999) Health maintenance and principal microbial diseases of cultured fishes. Iowa State University Press, Ames Iowa, p 344

    Google Scholar 

  • Prabha V, Prakash DJ, Sudha PN (2013) Analysis of bioactive compounds an antimicrobial activity of marine algae Kappaphycus alvarezii. Int J Pharm Sci Res 4(1):306–310

    Google Scholar 

  • Prado S, Romalde JL, Barja JL (2010) Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145:187–197

    PubMed  Google Scholar 

  • Praiboon J, Chirapart A, Soisarp N (2017) Principle and biological properties of sulfate polysaccharides from seaweed. In: Se-Kwon K (ed) Marine glycobiology principles and applications. CRC Press Taylor & Francis Group, Boca Raton 85–120

    Google Scholar 

  • Premnathan M, Chandra K, Bajpai SK, Kathiresan K (1992) A survey of some Indian marine plants for antiviral activity. Bot Mar 35:321–324

    Google Scholar 

  • Radhika D, Veerabahu C, Priya R, Mohaideen A (2014) A comparative study of biopotential of crude and fractionated extracts of some seaweeds from Tuticorin coast. Int J Phytopharmacol 5:27–30

    Google Scholar 

  • Rajapakse N, Kim SK (2011) Nutritional and digestive health benefits of seaweed, Academic Press; San Diego, CA, USA. Adv Food Nutr Res 64:17–28

    CAS  PubMed  Google Scholar 

  • Rama Devi K, Srinivasan R, Kannappan A, Santhakumari S, Bhuvaneswari M, Rajasekar P, Prabhu NM, Veera Ravi A (2016) In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. Biofouling 32(10):1171–1183

    CAS  PubMed  Google Scholar 

  • Rebecca LJ, Dhanalakshmi V, Sharmila S (2012) Effect of the extract of Ulva sp on pathogenic microorganisms. J Chem Pharm Res 4:4875–4878

    Google Scholar 

  • Reddy P, Urban S (2009) Meroditerpenoids from the southern Australian marine brown alga Sargassum fallax. Phytochemistry 70:250–255

    CAS  PubMed  Google Scholar 

  • Renuka R, Jeyalakshmi C, Rettinassababathy (2014) Studies on antifungal and growth promoting potentialities of algal extracts under in vitro conditions. In: National seminar on algae for sustainable agricultural production. Madurai, Tamil Nadu, India 91–92

    Google Scholar 

  • Reverter M, Bontemps NT, Sasal P, Saulnier D (2017) Use of medicinal plants in aquaculture. In: Austin B, Newaj-Fyzul A (eds) Diagnosis and control of diseases of fish and shellfish. Wiley, Hoboken, pp 223–261

    Google Scholar 

  • Rutherford ST, Bassler BL (2014) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427

    Google Scholar 

  • Saleh B, Al-Mariri A (2017) Antimicrobial activity of the marine algal extracts against selected pathogens. J Agric Sci Technol 19:1067–1077

    Google Scholar 

  • Salem WM, Galal H, Nasr El-deen F (2011) Screening for antibacterial activities in some marine algae from the red sea (Hurghada, Egypt). Afr J Microbiol Res 5:2160–2167

    Google Scholar 

  • Salvador N, Gomez-Garreta A, Lavelli L, Ribera MA (2007) Antimicrobial activity of Iberian macroalgae. Sci Mar 71:101–114

    Google Scholar 

  • Sandeepa MG, Ammani K (2015) Effect of probiotic bacterium on growth and biochemical parameters of shrimp Litopenaeus vannamei. Int J Recent Sci Res 6(2):2871–2875

    Google Scholar 

  • Sarmasik A (2000) Antimicrobial peptides a potential therapeutic alternative for the treatment of fish diseases. Turk J Biol 26:201–207

    Google Scholar 

  • Seafoodplus (2008). www.seafoodplus.org/fileadmin/files/news/2004-01-22SFRTD1launchBrussels.pdf. Accessed 25 Mar 10

  • Seenivasan R, Indu H, Archana G, Geetha S (2010) The antibacterial activity of some marine algae from South East Coast of India. Am-Eurasian J Agric Environ Sci 9(5):480–489

    Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 2008(20):113–136

    Google Scholar 

  • Selvin J, Lipton AP (2004) Biopotentials of Ulva fasciata and Hypnea musciformis collected from the peninsular coast of India. J Mar Sci Technol 12:1–6

    Google Scholar 

  • Serkedjieva J (2000) Antiherpes virus effect of the red marine alga Polysiphonia denudata. Z Naturforsch 55c:830–835

    Google Scholar 

  • Serkedjieva J (2003) Antiviral activity of the red marine alga Ceramium rubrum. Phytother Res 18:480–483

    Google Scholar 

  • Shanmugam M, Mody KH (2000) Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 79(12):1579–1594

    Google Scholar 

  • Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J (2017) Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res 1(9):453–454

    Google Scholar 

  • Singh M, Manikandan S, Kumaraguru AK (2012) In vitro antibacterial activity of selected brown marine macroalgae extracts collected from the Pudumadam Coast of “Gulf of Mannar” region against fish pathogens. Int J Human Genet Med Biotechnol Microbiol Stud. ISSN (Online) 2319–1732

    Google Scholar 

  • Sivagnanavelmurugan M, Marudhupandi T, Palavesam A, Immanuel G (2012) Antiviral effect of fucoidan extracted from the brown seaweed, Sargassum wightii, on shrimp Penaeus monodon postlarvae against White Spot Syndrome Virus. J World Aquacult Soc 43:697–706

    Google Scholar 

  • Souto ML et al (2002) Novel marine poly-ethers, vol 58. Tetrahedron, Londres, pp 8119–8125, set

    Google Scholar 

  • Sreenivasa-Rao PP (1991) Biological investigation of Indian marine algae and screening of some green, red and brown seaweeds for their antimicrobial activity. Seaweed Res Util 14(1):37–43

    Google Scholar 

  • Sreenivasa-Rao PP (1995) Biological investigation of Indian Phaeophyceae XII, antimicrobial activity of frozen samples of genus Sargassum collected from OKHA, west coast of India. Seaweed Res Util 17:105–109

    Google Scholar 

  • Srinivasa R, Parekh KS (1981) Antibacterial activity of Indian seaweed extracts. Bot Mar 24:577–582

    Google Scholar 

  • Stern J, Hagerman A, Steinberg P, Magon P (1996) Phlorotannin–protein interactions. J Chem Ecol 22:1877–1899

    CAS  PubMed  Google Scholar 

  • Sudheer NS, Philip R, Singh ISB (2012) Anti–white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon. Arch Virol 157:1665–1675

    CAS  PubMed  Google Scholar 

  • Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M (2001) Novel halogenated metabolites from the Malaysian Laurencia pannosa. J Nat Prod 64:597–602

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Uehara K, Watanabe R, Okumura T, Yamashita T, Omura H, Yomo T, Kawano T, Kanemitsu A, Narasaka H, Suzuki N, Itami T (1998) Efficacy of oral administration of fucoidan, a sulfated polysaccharide, in controlling white spot syndrome in kuruma shrimp in Japan. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for 896 Genetic Engineering and Biotechnology, Bangkok, pp 171–173

    Google Scholar 

  • Tariq VN (1991) Antifungal activity in crude extracts of marine red algae. Mycol Res 95:1433–1440

    Google Scholar 

  • Thanigaivel S, Vijayakumar S, Mukherjee A, Chandrasekaran N, Thomas J (2014) Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrio parahaemolyticus. Aquaculture 433:467–475

    Google Scholar 

  • Thinakaran T, Sivakumar K (2013) Antifungal activity of certain seaweeds from Puthumadam coast. Int J Res Rev Pharm Appl Sci 3(3):341–350

    Google Scholar 

  • Tibbetts SM, Milley JE, Lall SP (2016) Nutritional quality of some wild and cultivated seaweeds: nutrient composition, total phenolic content and in vitro digestibility. J Appl Phycol 28:3575–3585

    CAS  Google Scholar 

  • Torres P, Santos JP, Chow F, Pena Ferreira MJ, dos Santos DYAC (2018) Comparative analysis of in vitro antioxidant capacities of mycosporine-like amino acids (MAAs). Algal Res 34:57–67

    Google Scholar 

  • Tuney İ (2006) Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk J Biol 30(3):171–175

    Google Scholar 

  • Vairappan CS, Suzuki M (2000) Dynamics of total surface bacteria and bacterial species counts during desiccation in the Malaysian sea lettuce, Ulva reticulata (Ulvales, Chlorophyta). Phycol Res 48:55–61

    Google Scholar 

  • Vairappan CS, Suzuki M, Abe T, Masuda M (2001b) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517–523

    CAS  PubMed  Google Scholar 

  • Vallinayagam K, Arumugam R, Ragupathi Raja Kannan R, Thirumaran G, Anantharaman P (2009) Antibacterial activity of some selected seaweeds from Pudumadam coastal regions. Glob J Pharmacol 3(1):50–52

    Google Scholar 

  • Van Heemst JDH, Peulvis S, De Leeuw JW (1996) Novel algal polyphenolic biomacromolecules as significant contributors to resistant fractions of marine dissolved and particulate organic matter. Org Geochem, Londres 24(6/7):629–640

    Google Scholar 

  • Vlachos V, Cristchley AT, von Holy A (1997) Antimicrobial activity of extracts from selected southern Africanmarine Macroalgae. South Afr J Sci 93:328–332

    Google Scholar 

  • Wallace G, Fry SC (1994) Phenolic components of the plant cell wall. Int Rev Cytol 151:229–267

    CAS  PubMed  Google Scholar 

  • Wang Y-B, Li J-R, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4

    Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. In: Methods in ecology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS (2016) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    PubMed  PubMed Central  Google Scholar 

  • Wessels M, Konig GM, Wright AD (1999) A new tyrosine kinase inhibitor from the marine brown algae Stypopodium zonale. J Nat Prod Washington 62:927–930

    CAS  Google Scholar 

  • Whitfield FB, Helidoniotis F, Shaw KJ, Svoronos D (1999) Distribution of bromophenols in species of marine algae from eastern Australia. J Agric Food Chem 1999(47):2367–2373

    Google Scholar 

  • Yousr AH, Napis S, Rusul GRA, Son R (2007) Detection of aerolysin and hemolysin genes in Aeromonas spp. isolated from environmental and shellfish sources by polymerase chain reaction. ASEAN Food J 14:115–122

    Google Scholar 

  • Yuan YV, Carrington MF, Walsh NA (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43:1073–1081

    CAS  PubMed  Google Scholar 

  • Yuan L, Chang J, Yin Q, Lu M, Di Y, Wang P, Wang Z, Wang E, Lu F (2017) Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim Nutr 3(1):19–24

    PubMed  Google Scholar 

  • Zandi K, Fouladvand M, Pakdel P, Sartavi K (2007) Evaluation in vitro antiviral activity of a brown alga (Cystoseira myrica) from the Persian Gulf against Herpes simplex virus type 1. Afr J Biotechnol 6:2511–2514

    Google Scholar 

  • Zhang X, Thomsen M (2019) Biomolecular composition and revenue explained by interactions between extrinsic factors and endogenous rhythms of Saccharina latissima. Mar Drugs 17:107

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author’s would like to thank authorities of Annamalai university and our special thanks to Dean and Director Centre of Advanced study in Marine Biology, Faculty of Marine sciences, Annamalai University, Chidambaram for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noorjahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noorjahan, A., Mahesh, S., Anantharaman, P., Aiyamperumal, B. (2022). Antimicrobial Potential of Seaweeds: Critical Review. In: Ranga Rao, A., Ravishankar, G.A. (eds) Sustainable Global Resources Of Seaweeds Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-91955-9_21

Download citation

Publish with us

Policies and ethics