Skip to main content

Aeroengines: Principles, Components, and Eco-friendly Trends

  • Chapter
  • First Online:
Materials, Structures and Manufacturing for Aircraft

Part of the book series: Sustainable Aviation ((SA))

Abstract

The expectation of increased air travel in the future decades is met with the issue of a growing environmental effect. The aviation sector is developing potential solutions to reduce the environmental effect. Gas turbine engines are still the most common type of engine used in aircraft, and due to population growth and the number of flights, the emissions produced by these engines have become a major challenge in their future application. The use of lightweight materials is a powerful option to reduce fuel consumption and thus reduce aviation emissions. This chapter gives a brief history of aircraft engines, their classification, principles, common materials used in the main components, and the environmental effects of aircraft engine materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacob Teter, P. L. F., Bains, P., Lo Re, L., & Aviation. (2020). International Energy Agency official website. https://www.iea.org/reports/tracking-aviation-2020.

  2. Abideen, Z., et al. (2014). Sustainable biofuel production from non-food sources—An overview. Emirates Journal of Food and Agriculture, 26(12), 1057–1066.

    Article  Google Scholar 

  3. Graver, B., Rutherford, D., & Zheng, S. CO2 emissions from commercial aviation: 2013, 2018, and 2019. Int Council Clean Transport report. Retrieved from https://theicct.org/sites/default/files/publications/CO2-commercial-aviation-oct2020.pdf.

  4. Environment, I.C.A.O.I., ICAO 2019 Environmental Report. (2019). Retrieved from https://www.icao.int/environmental-protection/Documents/ICAO-ENV-Report2019-F1-WEB%20(1).pdf.

  5. Group, A.T.A. (2012). Aviation benefits beyond borders. ATAG, Geneva.

    Google Scholar 

  6. UNWTO, W. International tourism highlights, 2019 edition. Retrieved from https://www.e-unwto.org/doi/pdf/10.18111/9789284421152.

  7. Nele Erdmann, J. A., Möller, K., Zeller, H., & Burghaus, K. (2020). Annual Report 2019.

    Google Scholar 

  8. EDGAR—Emissions Database for Global Atmospheric Research. Retrieved from https://edgar.jrc.ec.europa.eu/.

  9. Thomas, V., & Burgess, S. (2015). International Air Transport Association Vision 2050 Report Assessment. Retrieved from https://commons.erau.edu/cgi/viewcontent.cgi?article=1176&context=aircon.

  10. ICAO, Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). (2016). Retrieved from https://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx.

  11. Nozhnitsky, Y. A. (2018). The problem of ensuring reliability of gas turbine engines. In IOP conference series: Materials science and engineering. IOP Publishing.

    Google Scholar 

  12. Marino, M., & Sabatini, R. (2014). Advanced lightweight aircraft design configurations for green operations. In Proceedings of the practical responses to climate change conference, Melbourne, Australia.

    Google Scholar 

  13. Schmidt, W. (1899). Herons von Alexandria Druckwerke und Automatentheater, Griechisch und Deutsch Herausgegeben. WS book., Trans. Leipzig, Saxon, Deutschland: Druck und Verlag von BG Teubner. Retrieved February 22, 2015.

    Google Scholar 

  14. Shearer, S. A., & Vogt, G. L. (2020). Rockets: Educator’s guide with activities in science, technology, engineering and mathematics. Retrieved from https://files.eric.ed.gov/fulltext/ED510854.pdf.

  15. Karabag, S. G. (2015). History of science and medicine in Turkish history secondary school textbooks. International Journal of Environmental and Science Education, 10(2), 287–300.

    Article  Google Scholar 

  16. Romanowski, D. A., & Keiser, M. A. (2010). The legacy of flight: Images from the archives of the smithsonian national air and space museum. Bunker Hill Pub.

    Google Scholar 

  17. Ricco, P. (2001). The difficult beginning. Retrieved from http://aerostories.free.fr/constructeurs/leduc/page7.html.

  18. Altuntas, O., & Govce, M. (2018). Hava Araçlarında Piston-prop Motorlar. Palme Publisher.

    Google Scholar 

  19. Pulkrabek, W. W. (2004). Engineering fundamentals of the internal combustion engine. Pearson Publisher.

    Google Scholar 

  20. University, E. T. (2021). Faculty of aeronautics and astronautics. Retrieved from http://ecas.anadolu.edu.tr/fotograflar_teknik_birimler.html.

  21. Torenbeek, E. (2013). Synthesis of subsonic airplane design: An introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance. Springer Science & Business Media.

    Google Scholar 

  22. Mattingly, J. D. (1996). Elements of gas turbine propulsion (Vol. 1). McGraw-Hill New York.

    Google Scholar 

  23. El-Sayed, A. F. (2008). Aircraft propulsion and gas turbine engines. CRC Press.

    Book  Google Scholar 

  24. U.S. Department of Transportation, F.A.A., Flight Standards Service, Aviation Maintenance Technician Handbook–Powerplant (FAA-H-8083-32A). (2018). Federal Aviation Administration.

    Google Scholar 

  25. University, A. Anadolu University Aviation Park. (2017). Retrieved from https://havacilikparki.anadolu.edu.tr/hava-ara%C3%A7lar%C4%B1m%C4%B1z.

  26. Board, A. F. S., & N.R. Council. (2007). Improving the efficiency of engines for large nonfighter aircraft. National Academies Press.

    Google Scholar 

  27. Kyprianidis, K. G. (2011). Future aero engine designs: An evolving vision. IntechOpen Publisher.

    Google Scholar 

  28. Klocke, F., et al. (2014). Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Annals, 63(2), 703–726.

    Article  Google Scholar 

  29. Boyer, R., et al. (2015). Materials considerations for aerospace applications. MRS Bulletin, 40(12), 1055–1066.

    Article  Google Scholar 

  30. Benini, E. (2011). Advances in gas turbine technology. IntechOpen Publisher. https://doi.org/10.5772/664

    Book  Google Scholar 

  31. Duhl, D., & Thompson, E. (1977). Directional structures for advanced aircraft turbine blades. Journal of Aircraft, 14(6), 521–526.

    Article  Google Scholar 

  32. Zhao, Q., et al. (2015). Methods for directional solidification casting. Google Patents. Retrieved from https://patents.google.com/patent/US20150231696A1/en.

  33. Leyens, C. (2004). Advanced materials and coatings for future gas turbine applications. In 24th international congress of the aeronautical sciences.

    Google Scholar 

  34. Gürgen, S., & Sofuoğlu, M. A. (2021). Smart polymer integrated cork composites for enhanced vibration damping properties. Composite Structures, 258, 113200.

    Article  Google Scholar 

  35. Shamsadinlo, B., et al. (2020). Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test. Polymer Testing, 89, 106594.

    Article  Google Scholar 

  36. Button, K. (2008). The impacts of globalisation on international air transport activity. In Guadalajara: Global Forum on Transport and Environment in a Globalising World. Retrieved from https://www.oecd.org/greengrowth/greening-transport/41373470.pdf.

  37. Standardization, I.O.f. (2006). Environmental management: Life cycle assessment; Principles and framework (Vol. 14044). ISO. Retrieved from https://www.iso.org/standard/38498.html.

  38. Scelsi, L., et al. (2011). Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment. Express Polymer Letters, 5(3).

    Google Scholar 

  39. Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41(2), 143–151.

    Article  Google Scholar 

  40. Marsh, G. (2012). Aero engines lose weight thanks to composites. Reinforced Plastics, 56(6), 32–35.

    Article  Google Scholar 

  41. Chua, M. H., et al. (2015). Understanding aerospace composite components’ supply chain carbon emissions. In Proceedings of the Irish manufacturing conference (IMC32), Belfast, UK.

    Google Scholar 

  42. Garetti, M., & Taisch, M. (2012). Sustainable manufacturing: Trends and research challenges. Production Planning & Control, 23(2–3), 83–104.

    Article  Google Scholar 

  43. McIlhagger, A., Archer, E., & McIlhagger, R. (2015). Manufacturing processes for composite materials and components for aerospace applications. In Polymer composites in the aerospace industry (pp. 53–75). Elsevier.

    Chapter  Google Scholar 

  44. Toozandehjani, M., et al. (2018). Conventional and advanced composites in aerospace industry: Technologies revisited. American Journal of Aerospace Engineering, 5(1), 9–15.

    Article  Google Scholar 

  45. Léonard, P., & Nylander, J. (2020). Sustainability assessment of composites in aero-engine components. In Proceedings of the design society: DESIGN conference. Cambridge University Press.

    Google Scholar 

  46. Altuntas, O. (2020). Lead emissions from the use of leaded avgas in Turkey. Aircraft Engineering and Aerospace Technology, 93(3), 493–501.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors of the book Prof. Melih Cemal Kuşhan, Dr. Selim Gürgen, and Dr. Mehmet Alper Sofuoğlu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rauf Sheikhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhi, M.R., Aygun, H., Altuntas, O. (2022). Aeroengines: Principles, Components, and Eco-friendly Trends. In: Kuşhan, M.C., Gürgen, S., Sofuoğlu, M.A. (eds) Materials, Structures and Manufacturing for Aircraft. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-91873-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91873-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91872-9

  • Online ISBN: 978-3-030-91873-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics