Skip to main content

Multi-Omics Profiling of the Tumor Microenvironment

  • Chapter
  • First Online:
Computational Methods for Precision Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1361))

Abstract

All solid tumors and many hematological malignancies grow and proliferate in a tumor microenvironment (TME), a spectrum of continuous and highly dynamic interactions with different immune and stromal cells. This ecosystem contributes to the extensive heterogeneity that exists between and within cancer patients. Understanding the characteristics of this intricate network could significantly improve cancer prognosis, as was demonstrated already for a subset of patients by the advent of immunotherapies (including monoclonal antibodies, bispecific antibodies, and chimeric antigen receptor (CAR) T cells. The development of multimodal omics technologies has allowed researchers to document and characterize the TME at single-cell resolution, which provides an unprecedent opportunity to understand the full complexity of the tumor microenvironment. In this chapter, we highlight the paradigm shift that has brought the TME to the forefront of cancer research and discuss its composition. In addition, we summarize the available multimodal single-cell omics methods that allow studying the TME from different angles, as well as their advantages and limitations. We discuss computational analysis tools, data integration, and methods to specifically study crosstalk between TME components. Finally, we touch upon the implications of studying the TME for ongoing or future clinical studies and how these can lead to more effective treatments for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  2. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. https://doi.org/10.1038/nrc3245.

    Article  CAS  PubMed  Google Scholar 

  3. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  4. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Frontiers. Oncology. 2013;3(90) https://doi.org/10.3389/fonc.2013.00090.

  5. Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34. https://doi.org/10.1038/nrclinonc.2017.101.

    Article  CAS  PubMed  Google Scholar 

  6. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69. https://doi.org/10.1158/0008-5472.CAN-10-1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. 2018;18(6):359–76. https://doi.org/10.1038/s41568-018-0006-7.

    Article  CAS  PubMed  Google Scholar 

  9. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9(4):138–41. https://doi.org/10.1016/0168-9525(93)90209-z.

    Article  CAS  PubMed  Google Scholar 

  10. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99. https://doi.org/10.1038/nm1087.

    Article  CAS  PubMed  Google Scholar 

  11. Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer. 2019;19(4):215–27. https://doi.org/10.1038/s41568-019-0125-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol. 2020;20(8):483–97. https://doi.org/10.1038/s41577-019-0271-z.

    Article  CAS  PubMed  Google Scholar 

  14. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391(10135):2128–39. https://doi.org/10.1016/s0140-6736(18)30789-x.

    Article  PubMed  Google Scholar 

  15. Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–80. https://doi.org/10.1038/s41568-020-0285-7.

    Article  CAS  PubMed  Google Scholar 

  16. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714. https://doi.org/10.1016/j.ccell.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105(8):1045–7. https://doi.org/10.1172/jci9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology. 2018;154(1):62–8. https://doi.org/10.1111/imm.12913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4(6):423–36. https://doi.org/10.1038/nrc1369.

    Article  CAS  PubMed  Google Scholar 

  20. Pasquier E, Kavallaris M, Andre N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7(8):455–65. https://doi.org/10.1038/nrclinonc.2010.82.

    Article  PubMed  Google Scholar 

  21. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73. https://doi.org/10.1038/nri2216.

    Article  CAS  PubMed  Google Scholar 

  22. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–88. https://doi.org/10.1038/s41577-018-0061-z.

    Article  CAS  PubMed  Google Scholar 

  23. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–s9. https://doi.org/10.1002/ajh.25418.

    Article  CAS  PubMed  Google Scholar 

  24. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2019; https://doi.org/10.1038/s41571-019-0297-y.

  25. Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. https://doi.org/10.1038/s41573-019-0028-1.

    Article  CAS  PubMed  Google Scholar 

  26. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100. https://doi.org/10.1038/s41571-020-0426-7.

    Article  PubMed  Google Scholar 

  27. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55. https://doi.org/10.1038/nature12034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grisaru-Tal S, Itan M, Klion AD, Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer. 2020; https://doi.org/10.1038/s41568-020-0283-9.

  29. Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020; https://doi.org/10.1038/s41568-020-0281-y.

  30. Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol. 2014;41(2):174–84. https://doi.org/10.1053/j.seminoncol.2014.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82. https://doi.org/10.1038/nri3902.

    Article  CAS  PubMed  Google Scholar 

  32. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15. https://doi.org/10.1038/nm.3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silverman DA, Martinez VK, Dougherty PM, Myers JN, Calin GA, Amit M. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 2021;81(6):1431–40. https://doi.org/10.1158/0008-5472.Can-20-2793.

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Li L, Chen N, Niu C, Li Z, Hu J, et al. Nerves in the tumor microenvironment: origin and effects. Front Cell Dev Biol. 2020;8(1630) https://doi.org/10.3389/fcell.2020.601738.

  35. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349.

    Article  CAS  PubMed  Google Scholar 

  36. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45. https://doi.org/10.1186/s12916-015-0278-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang H, Declerck YA. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 2013;73(16):4965–77. https://doi.org/10.1158/0008-5472.Can-13-0661.

    Article  CAS  PubMed  Google Scholar 

  38. Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;33(4):581–98. https://doi.org/10.1016/j.ccell.2018.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64. https://doi.org/10.1038/nature12627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47-e. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  Google Scholar 

  43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

    Article  CAS  PubMed  Google Scholar 

  44. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453. https://doi.org/10.1038/nmeth.3337. https://www.nature.com/articles/nmeth.3337#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17(1):174. https://doi.org/10.1186/s13059-016-1028-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. elife. 2017;6 https://doi.org/10.7554/eLife.26476.

  47. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34. https://doi.org/10.1186/s13073-019-0638-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother. 2018;67(7):1031–40. https://doi.org/10.1007/s00262-018-2150-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hackl H, Charoentong P, Finotello F, Trajanoski Z. Computational genomics tools for dissecting tumour–immune cell interactions. Nat Rev Genet. 2016;17(8):441–58. https://doi.org/10.1038/nrg.2016.67.

    Article  CAS  PubMed  Google Scholar 

  51. Liu XS, Mardis ER. Applications of immunogenomics to cancer. Cell. 2017;168(4):600–12. https://doi.org/10.1016/j.cell.2017.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, et al. Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol. 2017;35(10):908–11. https://doi.org/10.1038/nbt.3979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12(5):380–1. https://doi.org/10.1038/nmeth.3364.

    Article  CAS  PubMed  Google Scholar 

  54. Li B, Li T, Wang B, Dou R, Zhang J, Liu JS, et al. Ultrasensitive detection of TCR hypervariable-region sequences in solid-tissue RNA–seq data. Nat Genet. 2017;49(4):482–3. https://doi.org/10.1038/ng.3820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019;11(1):56. https://doi.org/10.1186/s13073-019-0666-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. https://doi.org/10.1038/nmeth.1315.

    Article  CAS  PubMed  Google Scholar 

  57. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, et al. Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017;14(4):381–7. https://doi.org/10.1038/nmeth.4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599–604. https://doi.org/10.1038/nprot.2017.149.

    Article  CAS  PubMed  Google Scholar 

  59. Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10(317) https://doi.org/10.3389/fgene.2019.00317.

  60. Haque A, Engel J, Teichmann SA, Lonnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75. https://doi.org/10.1186/s13073-017-0467-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):96. https://doi.org/10.1038/s12276-018-0071-8.

    Article  CAS  PubMed Central  Google Scholar 

  62. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 2020;52(9):1419–27. https://doi.org/10.1038/s12276-020-00499-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82. https://doi.org/10.1038/nbt.2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods. 2017;14(3):267–70. https://doi.org/10.1038/nmeth.4145.

    Article  CAS  PubMed  Google Scholar 

  65. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–8. https://doi.org/10.1038/nmeth.2639.

    Article  CAS  PubMed  Google Scholar 

  66. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using smart-seq2. Nat Protoc. 2014;9(1):171–81. https://doi.org/10.1038/nprot.2014.006.

    Article  CAS  PubMed  Google Scholar 

  67. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17(1):77. https://doi.org/10.1186/s13059-016-0938-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25(7):2194–205. https://doi.org/10.1158/1078-0432.Ccr-18-1955.

    Article  CAS  PubMed  Google Scholar 

  70. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14(10):955–8. https://doi.org/10.1038/nmeth.4407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Macosko Evan Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein Allon M, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201. https://doi.org/10.1016/j.cell.2015.04.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc. 2019;14(6):1841–62. https://doi.org/10.1038/s41596-019-0164-4.

    Article  CAS  PubMed  Google Scholar 

  74. Hashimoto S. Nx1-Seq (well based single-cell analysis system). Adv Exp Med Biol. 2019;1129:51–61. https://doi.org/10.1007/978-981-13-6037-4_4.

    Article  CAS  PubMed  Google Scholar 

  75. Sasagawa Y, Danno H, Takada H, Ebisawa M, Tanaka K, Hayashi T, et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 2018;19(1):29. https://doi.org/10.1186/s13059-018-1407-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–8. https://doi.org/10.1038/nmeth.4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, et al. Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc. 2012;7(5):813–28. https://doi.org/10.1038/nprot.2012.022.

    Article  CAS  PubMed  Google Scholar 

  78. Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16(1):148. https://doi.org/10.1186/s13059-015-0706-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018;9(1):619. https://doi.org/10.1038/s41467-018-02866-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hagemann-Jensen M, Abdullayev I, Sandberg R, Faridani OR. Small-seq for single-cell small-RNA sequencing. Nat Protoc. 2018;13(10):2407–24. https://doi.org/10.1038/s41596-018-0049-y.

    Article  CAS  PubMed  Google Scholar 

  81. Isakova A, Neff N, Quake SR. Single cell profiling of total RNA using Smart-seq-total. bioRxiv. 2020:2020.06.02.131060. https://doi.org/10.1101/2020.06.02.131060.

  82. Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ, Álvarez-Varela A, et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat Biotechnol. 2020; https://doi.org/10.1038/s41587-020-0469-4.

  83. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–43.e4. https://doi.org/10.1016/j.molcel.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  84. Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16(3):133–45. https://doi.org/10.1038/nrg3833.

    Article  CAS  PubMed  Google Scholar 

  85. Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17(1):63. https://doi.org/10.1186/s13059-016-0927-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun. 2019;10(1):4667. https://doi.org/10.1038/s41467-019-12266-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746. https://doi.org/10.15252/msb.20188746.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502. https://doi.org/10.1038/nbt.3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902.e21. https://doi.org/10.1016/j.cell.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. https://doi.org/10.1186/s13059-017-1382-0.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jiang P, Thomson JA, Stewart R. Quality control of single-cell RNA-seq by SinQC. Bioinformatics. 2016;32(16):2514–6. https://doi.org/10.1093/bioinformatics/btw176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33(8):1179–86. https://doi.org/10.1093/bioinformatics/btw777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience. 2020;9(12) https://doi.org/10.1093/gigascience/giaa151.

  95. Yang S, Corbett SE, Koga Y, Wang Z, Johnson WE, Yajima M, et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 2020;21(1):57. https://doi.org/10.1186/s13059-020-1950-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19(1):224. https://doi.org/10.1186/s13059-018-1603-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. DePasquale EAK, Schnell DJ, Van Camp PJ, Valiente-Alandí Í, Blaxall BC, Grimes HL, et al. DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 2019;29(6):1718–27.e8. https://doi.org/10.1016/j.celrep.2019.09.082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329–37.e4. https://doi.org/10.1016/j.cels.2019.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281–91 e9. https://doi.org/10.1016/j.cels.2018.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bais AS, Kostka D. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics. 2019;36(4):1150–8. https://doi.org/10.1093/bioinformatics/btz698.

    Article  CAS  PubMed Central  Google Scholar 

  101. Xin H, Lian Q, Jiang Y, Luo J, Wang X, Erb C, et al. GMM-Demux: sample demultiplexing, multiplet detection, experiment planning, and novel cell-type verification in single cell sequencing. Genome Biol. 2020;21(1):188. https://doi.org/10.1186/s13059-020-02084-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xi NM, Li JJ. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 2021;12(2):176–94.e6. https://doi.org/10.1016/j.cels.2020.11.008.

    Article  CAS  PubMed  Google Scholar 

  103. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155–60. https://doi.org/10.1038/nbt.3102.

    Article  CAS  PubMed  Google Scholar 

  104. Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 2017;18(1):212. https://doi.org/10.1186/s13059-017-1334-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.

    Article  PubMed  Google Scholar 

  106. Buttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq batch correction. Nat Methods. 2019;16(1):43–9. https://doi.org/10.1038/s41592-018-0254-1.

    Article  CAS  PubMed  Google Scholar 

  107. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell. 2019;177(7):1873–87.e17. https://doi.org/10.1016/j.cell.2019.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96. https://doi.org/10.1038/s41592-019-0619-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018;15(12):1053–8. https://doi.org/10.1038/s41592-018-0229-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun. 2018;9(1):997. https://doi.org/10.1038/s41467-018-03405-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019;10(1):390. https://doi.org/10.1038/s41467-018-07931-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Statist Mech Theory Exp. 2008;2008:10008. https://doi.org/10.1088/1742-5468/2008/10/p10008.

    Article  Google Scholar 

  113. Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016;34(11):1145–60. https://doi.org/10.1038/nbt.3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. https://doi.org/10.1038/nbt.2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bendall SC, Davis KL, Amir el AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157(3):714–25. https://doi.org/10.1016/j.cell.2014.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54. https://doi.org/10.1038/s41587-019-0071-9.

    Article  CAS  PubMed  Google Scholar 

  117. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):477. https://doi.org/10.1186/s12864-018-4772-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59. https://doi.org/10.1186/s13059-019-1663-x.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The human cell atlas. Elife. 2017;6 https://doi.org/10.7554/eLife.27041.

  120. Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of cell atlases. Nat Methods. 2019;16(10):983–6. https://doi.org/10.1038/s41592-019-0535-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018;15(5):359–62. https://doi.org/10.1038/nmeth.4644.

    Article  CAS  PubMed  Google Scholar 

  122. Hou R, Denisenko E, Forrest ARR. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics. 2019;35(22):4688–95. https://doi.org/10.1093/bioinformatics/btz292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tan Y, Cahan P. SingleCellNet: a computational tool to classify single cell RNA-Seq data across platforms and across species. Cell Syst. 2019;9(2):207–13.e2. https://doi.org/10.1016/j.cels.2019.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72. https://doi.org/10.1038/s41590-018-0276-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteomics Bioinformatics. 2020; https://doi.org/10.1016/j.gpb.2020.07.004.

  126. Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11(7):740–2. https://doi.org/10.1038/nmeth.2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16(1):278. https://doi.org/10.1186/s13059-015-0844-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018;15(4):255–61. https://doi.org/10.1038/nmeth.4612.

    Article  CAS  PubMed  Google Scholar 

  129. Van den Berge K, Perraudeau F, Soneson C, Love MI, Risso D, Vert J-P, et al. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications. Genome Biol. 2018;19(1):24. https://doi.org/10.1186/s13059-018-1406-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, et al. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314–21. https://doi.org/10.1093/bioinformatics/btx194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. https://doi.org/10.1038/nmeth.4463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinform. 2018;19(1):232. https://doi.org/10.1186/s12859-018-2217-z.

    Article  CAS  Google Scholar 

  135. Mallory XF, Edrisi M, Navin N, Nakhleh L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 2020;21(1):208. https://doi.org/10.1186/s13059-020-02119-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99(8):5261–6. https://doi.org/10.1073/pnas.082089499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. https://doi.org/10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25. https://doi.org/10.1016/0888-7543(92)90147-k.

    Article  CAS  PubMed  Google Scholar 

  139. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6. https://doi.org/10.1126/science.1229164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xi L, Belyaev A, Spurgeon S, Wang X, Gong H, Aboukhalil R, et al. New library construction method for single-cell genomes. PLoS One. 2017;12(7):e0181163. https://doi.org/10.1371/journal.pone.0181163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886–95. https://doi.org/10.1016/j.cell.2012.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Francis JM, Zhang C-Z, Maire CL, Jung J, Manzo VE, Adalsteinsson VA, et al. <em>EGFR</em> variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 2014;4(8):956–71. https://doi.org/10.1158/2159-8290.Cd-13-0879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hughes AEO, Magrini V, Demeter R, Miller CA, Fulton R, Fulton LL, et al. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet. 2014;10(7):e1004462. https://doi.org/10.1371/journal.pgen.1004462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gawad C, Koh W, Quake SR. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci. 2014;111(50):17947–52. https://doi.org/10.1073/pnas.1420822111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell. 2018;172(1):205–17.e12. https://doi.org/10.1016/j.cell.2017.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017;27(8):1287–99. https://doi.org/10.1101/gr.209973.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, et al. Complex tumor genomes inferred from single circulating tumor cells by Array-CGH and next-generation sequencing. Cancer Res. 2013;73(10):2965–75. https://doi.org/10.1158/0008-5472.Can-12-4140.

    Article  CAS  PubMed  Google Scholar 

  148. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84. https://doi.org/10.1038/nbt.2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58(4):598–609. https://doi.org/10.1016/j.molcel.2015.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Luquette LJ, Bohrson CL, Sherman MA, Park PJ. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat Commun. 2019;10(1):3908. https://doi.org/10.1038/s41467-019-11857-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020; https://doi.org/10.1038/s41586-020-2864-x.

  152. Pellegrino M, Sciambi A, Treusch S, Durruthy-Durruthy R, Gokhale K, Jacob J, et al. High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res. 2018;28(9):1345–52. https://doi.org/10.1101/gr.232272.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shema E, Bernstein BE, Buenrostro JD. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat Genet. 2019;51(1):19–25. https://doi.org/10.1038/s41588-018-0290-x.

    Article  CAS  PubMed  Google Scholar 

  154. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. https://doi.org/10.1038/nature14590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20. https://doi.org/10.1038/nmeth.3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35. https://doi.org/10.1101/gr.161679.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ku WL, Nakamura K, Gao W, Cui K, Hu G, Tang Q, et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat Methods. 2019;16(4):323–5. https://doi.org/10.1038/s41592-019-0361-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59–64. https://doi.org/10.1038/nature12593.

    Article  CAS  PubMed  Google Scholar 

  159. Marx V. A dream of single-cell proteomics. Nat Methods. 2019;16(9):809–12. https://doi.org/10.1038/s41592-019-0540-6.

    Article  CAS  PubMed  Google Scholar 

  160. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22. https://doi.org/10.1021/ac901049w.

    Article  CAS  PubMed  Google Scholar 

  161. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96. https://doi.org/10.1126/science.1198704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012;30(9):858–67. https://doi.org/10.1038/nbt.2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, et al. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry A. 2015;87(9):830–42. https://doi.org/10.1002/cyto.a.22725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ferrer-Font L, Pellefigues C, Mayer JU, Small SJ, Jaimes MC, Price KM. Panel design and optimization for high-dimensional Immunophenotyping assays using spectral flow cytometry. Curr Protoc Cytom. 2020;92(1):e70. https://doi.org/10.1002/cpcy.70.

    Article  CAS  PubMed  Google Scholar 

  165. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91. https://doi.org/10.1038/nbt.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 2015;162(1):184–97. https://doi.org/10.1016/j.cell.2015.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gassen SV, Callebaut B, Helden MJV, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636–45. https://doi.org/10.1002/cyto.a.22625.

    Article  PubMed  Google Scholar 

  168. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 2018;24(2):144–53. https://doi.org/10.1038/nm.4466.

    Article  CAS  PubMed  Google Scholar 

  169. Nowicka M, Krieg C, Weber LM, Hartmann FJ, Guglietta S, Becher B, et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res. 2017;6:748. https://doi.org/10.12688/f1000research.11622.2.

    Article  CAS  PubMed  Google Scholar 

  170. Burton RJ, Ahmed R, Cuff S, Baker S, Artemiou A, Eberl M. CytoPy: an autonomous cytometry analysis framework. bioRxiv. 2021:2020.04.08.031898. https://doi.org/10.1101/2020.04.08.031898.

  171. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Thorsen SB, Ekman D, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9(4):e95192. https://doi.org/10.1371/journal.pone.0095192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lollo B, Steele F, Gold L. Beyond antibodies: new affinity reagents to unlock the proteome. Proteomics. 2014;14(6):638–44. https://doi.org/10.1002/pmic.201300187.

    Article  CAS  PubMed  Google Scholar 

  173. Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, et al. Multiplatform approach for plasma proteomics: complementarity of Olink proximity extension assay technology to mass spectrometry-based protein profiling. J Proteome Res. 2021;20(1):751–62. https://doi.org/10.1021/acs.jproteome.0c00641.

    Article  CAS  PubMed  Google Scholar 

  174. Enroth S, Berggrund M, Lycke M, Broberg J, Lundberg M, Assarsson E, et al. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol. 2019;2(1):221. https://doi.org/10.1038/s42003-019-0464-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Graumann J, Finkernagel F, Reinartz S, Stief T, Brödje D, Renz H, et al. Multi-platform affinity proteomics identify proteins linked to metastasis and immune suppression in ovarian cancer plasma. Front Oncol. 2019;9(1150) https://doi.org/10.3389/fonc.2019.01150.

  176. Jurisic V. Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics. 2020;17(9):663–74. https://doi.org/10.1080/14789450.2020.1845654.

    Article  CAS  PubMed  Google Scholar 

  177. Bigenwald C, Horowitz A, Navada SC, Odchimar-Reissig R, Rai R, Melana S, et al. Cross talk between the immune compartment and the tumor cells in myelodysplastic syndromes (MDS). Blood. 2019;134(Supplement_1):2986. https://doi.org/10.1182/blood-2019-124887.

    Article  Google Scholar 

  178. Method of the year 2019: single-cell multimodal omics. Nat Methods. 2020;17(1):1. https://doi.org/10.1038/s41592-019-0703-5.

  179. Remark R, Merghoub T, Grabe N, Litjens G, Damotte D, Wolchok JD, et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol. 2016;1(1):aaf6925-aaf. https://doi.org/10.1126/sciimmunol.aaf6925.

    Article  Google Scholar 

  180. Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH, et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 2017;19(1):203–17. https://doi.org/10.1016/j.celrep.2017.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22. https://doi.org/10.1038/nmeth.2869.

    Article  CAS  PubMed  Google Scholar 

  182. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging mass cytometry. Cytometry A. 2017;91(2):160–9. https://doi.org/10.1002/cyto.a.23053.

    Article  PubMed  Google Scholar 

  183. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. https://doi.org/10.1038/nm.3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass cytometry imaging for the study of human diseases—applications and data analysis strategies. Front Immunol. 2019;10(2657) https://doi.org/10.3389/fimmu.2019.02657.

  185. Bodenmiller B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2016;2(4):225–38. https://doi.org/10.1016/j.cels.2016.03.008.

    Article  CAS  PubMed  Google Scholar 

  186. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018;174(4):968–81.e15. https://doi.org/10.1016/j.cell.2018.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38(5):586–99. https://doi.org/10.1038/s41587-020-0472-9.

    Article  CAS  PubMed  Google Scholar 

  188. Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun XK, et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 2018;6(1):25–36.e5. https://doi.org/10.1016/j.cels.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods. 2017;14(9):873–6. https://doi.org/10.1038/nmeth.4391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Somarakis A, Van Unen V, Koning F, Lelieveldt B, Hollt T. ImaCytE: visual exploration of cellular micro-environments for imaging mass cytometry data. IEEE Trans Vis Comput Graph. 2021;27(1):98–110. https://doi.org/10.1109/tvcg.2019.2931299.

    Article  PubMed  Google Scholar 

  191. Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature. 2019;568(7751):235–9. https://doi.org/10.1038/s41586-019-1049-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82. https://doi.org/10.1126/science.aaf2403.

    Article  CAS  PubMed  Google Scholar 

  193. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463–7. https://doi.org/10.1126/science.aaw1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285–9. https://doi.org/10.1038/nbt.3129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519–22. https://doi.org/10.1038/nmeth.3370.

    Article  CAS  PubMed  Google Scholar 

  196. Nam AS, Kim K-T, Chaligne R, Izzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature. 2019; https://doi.org/10.1038/s41586-019-1367-0.

  197. Kong SL, Li H, Tai JA, Courtois ET, Poh HM, Lau DP, et al. Concurrent single-cell RNA and targeted DNA sequencing on an automated platform for Comeasurement of genomic and transcriptomic signatures. Clin Chem. 2019;65(2):272–81. https://doi.org/10.1373/clinchem.2018.295717.

    Article  CAS  PubMed  Google Scholar 

  198. Rodriguez-Meira A, Buck G, Clark S-A, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling Intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73(6):1292–305.e8. https://doi.org/10.1016/j.molcel.2019.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229–32. https://doi.org/10.1038/nmeth.3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17(1):88. https://doi.org/10.1186/s13059-016-0950-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26(3):304–19. https://doi.org/10.1038/cr.2016.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018;361(6409):1380–5. https://doi.org/10.1126/science.aau0730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Satpathy AT, Saligrama N, Buenrostro JD, Wei Y, Wu B, Rubin AJ, et al. Transcript-indexed ATAC-seq for precision immune profiling. Nat Med. 2018;24(5):580–90. https://doi.org/10.1038/s41591-018-0008-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018;9(1):781. https://doi.org/10.1038/s41467-018-03149-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Luo C, Liu H, Wang B-A, Bartlett A, Rivkin A, Nery JR, et al. Multi-omic profiling of transcriptome and DNA methylome in single nuclei with molecular partitioning. bioRxiv. 2018:434845. https://doi.org/10.1101/434845.

  206. Liu L, Liu C, Quintero A, Wu L, Yuan Y, Wang M, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun. 2019;10(1):470. https://doi.org/10.1038/s41467-018-08205-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Reyes M, Billman K, Hacohen N, Blainey PC. Simultaneous profiling of gene expression and chromatin accessibility in single cells. Adv Biosyst. 2019;3(11):1900065. https://doi.org/10.1002/adbi.201900065.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019;37(12):1452–7. https://doi.org/10.1038/s41587-019-0290-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol. 2019;26(11):1063–70. https://doi.org/10.1038/s41594-019-0323-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Luo C, Liu H, Xie F, Armand EJ, Siletti K, Bakken TE, et al. Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants. bioRxiv. 2019:2019.12.11.873398. https://doi.org/10.1101/2019.12.11.873398.

  211. Wang Y, Yuan P, Yan Z, Yang M, Huo Y, Nie Y, et al. Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat Commun. 2021;12(1):1247. https://doi.org/10.1038/s41467-021-21409-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature. 2019;568(7750):49–54. https://doi.org/10.1038/s41586-019-1035-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8. https://doi.org/10.1038/nmeth.4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35(10):936–9. https://doi.org/10.1038/nbt.3973.

    Article  CAS  PubMed  Google Scholar 

  215. Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. 2017;7(1):44447. https://doi.org/10.1038/srep44447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chung H, Parkhurst C, Magee EM, Phillips D, Habibi E, Chen F, et al. Simultaneous single cell measurements of intranuclear proteins and gene expression. bioRxiv. 2021:2021.01.18.427139. https://doi.org/10.1101/2021.01.18.427139.

  217. Fiskin E, Lareau CA, Eraslan G, Ludwig LS, Regev A. Single-cell multimodal profiling of proteins and chromatin accessibility using PHAGE-ATAC. bioRxiv. 2020:2020.10.01.322420. https://doi.org/10.1101/2020.10.01.322420.

  218. Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, Takeshima Y, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021; https://doi.org/10.1038/s41587-021-00927-2.

  219. Swanson E, Lord C, Reading J, Heubeck AT, Genge PC, Thomson Z, et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. elife. 2021;10 https://doi.org/10.7554/eLife.63632.

  220. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167(7):1853–66.e17. https://doi.org/10.1016/j.cell.2016.11.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 2016;167(7):1883–96.e15. https://doi.org/10.1016/j.cell.2016.11.039.

    Article  CAS  PubMed  Google Scholar 

  222. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 2017;14(3):297–301. https://doi.org/10.1038/nmeth.4177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, et al. Coupled single-cell CRISPR screening and Epigenomic profiling reveals causal gene regulatory networks. Cell. 2019;176(1):361–76.e17. https://doi.org/10.1016/j.cell.2018.11.022.

    Article  CAS  PubMed  Google Scholar 

  224. Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods. 2019;16(5):409–12. https://doi.org/10.1038/s41592-019-0392-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods. 2018;15(11):932–5. https://doi.org/10.1038/s41592-018-0175-z.

    Article  CAS  PubMed  Google Scholar 

  226. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018;361(6400):eaat5691. https://doi.org/10.1126/science.aat5691.

    Article  CAS  Google Scholar 

  227. Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci. 2019;116(39):19490–9. https://doi.org/10.1073/pnas.1912459116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1177932219899051. https://doi.org/10.1177/1177932219899051.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Peng A, Mao X, Zhong J, Fan S, Hu Y. Single-cell multi-omics and its prospective application in cancer biology. Proteomics. 2020;20(13):1900271. https://doi.org/10.1002/pmic.201900271.

    Article  CAS  Google Scholar 

  230. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25(22):2906–12. https://doi.org/10.1093/bioinformatics/btp543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237–45. https://doi.org/10.1093/bioinformatics/btq182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mo Q, Wang S, Seshan VE, Olshen AB, Schultz N, Sander C, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A. 2013;110(11):4245–50. https://doi.org/10.1073/pnas.1208949110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7. https://doi.org/10.1038/nmeth.2810.

    Article  CAS  PubMed  Google Scholar 

  234. Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics. 2015;16(1):1022. https://doi.org/10.1186/s12864-015-2223-8.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Yang Z, Michailidis G. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics. 2016;32(1):1–8. https://doi.org/10.1093/bioinformatics/btv544.

    Article  CAS  PubMed  Google Scholar 

  236. Welch JD, Hartemink AJ, Prins JF. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 2017;18(1):138. https://doi.org/10.1186/s13059-017-1269-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Gabasova E, Reid J, Wernisch L. Clusternomics: integrative context-dependent clustering for heterogeneous datasets. PLoS Comput Biol. 2017;13(10):e1005781. https://doi.org/10.1371/journal.pcbi.1005781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Rohart F, Gautier B, Singh A, KA LC. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752. https://doi.org/10.1371/journal.pcbi.1005752.

    Article  CAS  Google Scholar 

  239. Champion M, Brennan K, Croonenborghs T, Gentles AJ, Pochet N, Gevaert O. Module analysis captures Pancancer genetically and epigenetically deregulated cancer driver genes for smoking and antiviral response. EBioMedicine. 2018;27:156–66. https://doi.org/10.1016/j.ebiom.2017.11.028.

    Article  PubMed  Google Scholar 

  240. Nguyen H, Shrestha S, Draghici S, Nguyen T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics. 2018;35(16):2843–6. https://doi.org/10.1093/bioinformatics/bty1049.

    Article  CAS  Google Scholar 

  241. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124. https://doi.org/10.15252/msb.20178124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Rappoport N, Shamir R. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics. 2019;35(18):3348–56. https://doi.org/10.1093/bioinformatics/btz058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Meng C, Basunia A, Peters B, Gholami AM, Kuster B, Culhane AC. MOGSA: integrative single sample gene-set analysis of multiple omics data. Mol Cell Proteomics. 2019;18(8 suppl 1):S153–s68. https://doi.org/10.1074/mcp.TIR118.001251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Liu J, Huang Y, Singh R, Vert J-P, Noble WS. Jointly embedding multiple single-cell omics measurements. bioRxiv. 2019:644310. https://doi.org/10.1101/644310.

  245. Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21(1):111. https://doi.org/10.1186/s13059-020-02015-1.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Cao K, Bai X, Hong Y, Wan L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics. 2020;36(Supplement_1):i48–i56. https://doi.org/10.1093/bioinformatics/btaa443.

    Article  CAS  Google Scholar 

  247. Kim HJ, Lin Y, Geddes TA, Yang JYH, Yang P. CiteFuse enables multi-modal analysis of CITE-seq data. Bioinformatics. 2020; https://doi.org/10.1093/bioinformatics/btaa282.

  248. Andersson A, Bergenstråhle J, Asp M, Bergenstråhle L, Jurek A, Fernández Navarro J, et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol. 2020;3(1):565. https://doi.org/10.1038/s42003-020-01247-y.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021; https://doi.org/10.1016/j.cell.2021.04.048.

  250. Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nat Methods. 2021;18(3):272–82. https://doi.org/10.1038/s41592-020-01050-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7):1611–24.e24. https://doi.org/10.1016/j.cell.2017.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, et al. Analysis of single-cell RNA-Seq identifies cell-cell communication associated with tumor characteristics. Cell Rep. 2018;25(6):1458–68.e4. https://doi.org/10.1016/j.celrep.2018.10.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yuan D, Tao Y, Chen G, Shi T. Systematic expression analysis of ligand-receptor pairs reveals important cell-to-cell interactions inside glioma. Cell Commun Signal. 2019;17(1):48. https://doi.org/10.1186/s12964-019-0363-1.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet. 2019;20(12):724–46. https://doi.org/10.1038/s41576-019-0166-7.

    Article  CAS  PubMed  Google Scholar 

  255. Yeung T-L, Sheng J, Leung CS, Li F, Kim J, Ho SY, et al. Systematic identification of Druggable epithelial–stromal crosstalk signaling networks in ovarian cancer. J Natl Cancer Inst. 2018;111(3):272–82. https://doi.org/10.1093/jnci/djy097.

    Article  CAS  PubMed Central  Google Scholar 

  256. Shao X, Lu X, Liao J, Chen H, Fan X. New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data. Protein Cell. 2020;11(12):866–80. https://doi.org/10.1007/s13238-020-00727-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet. 2020; https://doi.org/10.1038/s41576-020-00292-x.

  258. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand–receptor-mediated multicellular signalling in human. Nat Commun. 2015;6(1):7866. https://doi.org/10.1038/ncomms8866.

    Article  CAS  PubMed  Google Scholar 

  259. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25(10):1576–88. https://doi.org/10.1038/s41591-019-0590-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, et al. Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178(6):1493–508 e20. https://doi.org/10.1016/j.cell.2019.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc. 2020; https://doi.org/10.1038/s41596-020-0292-x.

  262. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53. https://doi.org/10.1038/s41586-018-0698-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, et al. Multilineage communication regulates human liver bud development from pluripotency. Nature. 2017;546(7659):533–8. https://doi.org/10.1038/nature22796.

    Article  CAS  PubMed  Google Scholar 

  264. Pavličev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017;27(3):349–61. https://doi.org/10.1101/gr.207597.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhou JX, Taramelli R, Pedrini E, Knijnenburg T, Huang S. Extracting intercellular signaling network of cancer tissues using ligand-receptor expression patterns from whole-tumor and single-cell transcriptomes. Sci Rep. 2017;7(1):8815. https://doi.org/10.1038/s41598-017-09307-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Boisset J-C, Vivié J, Grün D, Muraro MJ, Lyubimova A, van Oudenaarden A. Mapping the physical network of cellular interactions. Nat Methods. 2018;15(7):547–53. https://doi.org/10.1038/s41592-018-0009-z.

    Article  CAS  PubMed  Google Scholar 

  267. Xiong Z, Yang Q, Li X. Effect of intra- and inter-tumoral heterogeneity on molecular characteristics of primary IDH-wild type glioblastoma revealed by single-cell analysis. CNS Neurosci Ther. 2020;26(9):981–9. https://doi.org/10.1111/cns.13396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Corridoni D, Antanaviciute A, Gupta T, Fawkner-Corbett D, Aulicino A, Jagielowicz M, et al. Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat Med. 2020;26(9):1480–90. https://doi.org/10.1038/s41591-020-1003-4.

    Article  CAS  PubMed  Google Scholar 

  269. Ghorani E, Reading JL, Henry JY, Massy MR, Rosenthal R, Turati V, et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat Cancer. 2020;1(5):546–61. https://doi.org/10.1038/s43018-020-0066-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lee H-O, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52(6):594–603. https://doi.org/10.1038/s41588-020-0636-z.

    Article  CAS  PubMed  Google Scholar 

  271. Park J-E, Botting RA, Domínguez Conde C, Popescu D-M, Lavaert M, Kunz DJ, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367(6480):eaay3224. https://doi.org/10.1126/science.aay3224.

    Article  CAS  Google Scholar 

  272. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020;38(8):970–9. https://doi.org/10.1038/s41587-020-0602-4.

    Article  CAS  PubMed  Google Scholar 

  273. Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 2020;73(5):1118–30. https://doi.org/10.1016/j.jhep.2020.05.039.

    Article  CAS  PubMed  Google Scholar 

  274. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Myung P, Plikus MV, et al. Inference and analysis of cell-cell communication using CellChat. bioRxiv. 2020:2020.07.21.214387. https://doi.org/10.1101/2020.07.21.214387.

  275. Noël F, Massenet-Regad L, Carmi-Levy I, Cappuccio A, Grandclaudon M, Trichot C, et al. ICELLNET: a transcriptome-based framework to dissect intercellular communication. bioRxiv. 2020:2020.03.05.976878. https://doi.org/10.1101/2020.03.05.976878.

  276. Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR. Predicting cell-to-cell communication networks using NATMI. Nat Commun. 2020;11(1):5011. https://doi.org/10.1038/s41467-020-18873-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge J. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 2020; https://doi.org/10.1093/nar/gkaa183.

  278. Alame M, Cornillot E, Cacheux V, Rigau V, Costes-Martineau V, Lacheretz-Szablewski V, et al. The immune landscape of primary central nervous system diffuse large B cell lymphoma. bioRxiv. 2020:2020.08.17.254284. https://doi.org/10.1101/2020.08.17.254284.

  279. Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity. 2020;52(1):183–99.e9. https://doi.org/10.1016/j.immuni.2019.11.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. 2015;10(7):1187–201. https://doi.org/10.1016/j.celrep.2015.01.040.

    Article  CAS  PubMed  Google Scholar 

  281. Wang Y, Wang R, Zhang S, Song S, Jiang C, Han G, et al. iTALK: an R package to characterize and illustrate intercellular communication. bioRxiv. 2019:507871. https://doi.org/10.1101/507871.

  282. Tyler SR, Rotti PG, Sun X, Yi Y, Xie W, Winter MC, et al. PyMINEr finds gene and Autocrine-paracrine networks from human islet scRNA-Seq. Cell Rep. 2019;26(7):1951–64.e8. https://doi.org/10.1016/j.celrep.2019.01.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun. 2020;11(1):2084. https://doi.org/10.1038/s41467-020-15968-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 2019;29(1):202–11.e6. https://doi.org/10.1016/j.celrep.2019.08.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2019; https://doi.org/10.1038/s41556-019-0439-6.

  286. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  Google Scholar 

  287. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17. https://doi.org/10.2202/1544-6115.1128.

    Article  PubMed  Google Scholar 

  288. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17(2):159–62. https://doi.org/10.1038/s41592-019-0667-5.

    Article  CAS  PubMed  Google Scholar 

  289. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182(2):497–514.e22. https://doi.org/10.1016/j.cell.2020.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Sathe A, Grimes SM, Lau BT, Bai X, Chen J, Suarez C, et al. The cellular genomic diversity, regulatory states and networking of the metastatic colorectal cancer microenvironment. bioRxiv. 2020;2020.09.01.273672 https://doi.org/10.1101/2020.09.01.273672.

  291. Wang S, Karikomi M, MacLean AL, Nie Q. Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res. 2019;47(11):e66–e. https://doi.org/10.1093/nar/gkz204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Laganà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Oekelen, O., Laganà, A. (2022). Multi-Omics Profiling of the Tumor Microenvironment. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_16

Download citation

Publish with us

Policies and ethics