Skip to main content

Fibroblast Growth Factor 23 as Regulator of Vitamin D Metabolism

  • Chapter
  • First Online:
Phosphate Metabolism

Abstract

Fibroblast growth factor 23 (FGF23) is a hormone produced by osteocytes in bone that acts on the kidneys to regulate phosphate and vitamin D metabolism.FGF23 levels were shown to be increased in the early stage of chronic kidney disease (CKD), with a slight decline in estimated glomerular filtration rate (eGFR) even when the range was restricted to above 60 mL/min/1.73 m2, indicating that subtle phosphate load is a stimulator of FGF23 in serum. FGF23 is also known to inhibit vitamin D activation from 25-hydroxyvitamin D (25-OH-D) to 1,25-dihydroxyvitamin D [1,25(OH)2D], while it stimulates its degradation from 25-OH-D to 24,25-dihydroxyvitamin D [24,25(OH)2D]. Previously, we demonstrated a significant and negative association of serum FGF23 with serum 1,25(OH)2D and 1,25(OH)2D/25-OH-D ratio, a putative parameter for CYP27B1, and confirmed the physiological effects of FGF23 on phosphate and vitamin D metabolism in non-CKD subjects. Elevated FGF23 by itself is reported to be associated with various adverse outcomes, including left ventricular hypertrophy, endothelial dysfunction, and activation of the renin-angiotensin-aldosterone system, leading to increased mortality even in non-CKD individuals. On the other hand, our previous study showed that the impaired incremental response of serum FGF23 in response to oral phosphate load in diabetic patients can help to significantly increase serum phosphate (Yoda et al., J Clin Endocrinol Metab 97:E2036–43, 2012) and thus may contribute to progression of vascular calcification in those patients (personal observation). It is suggested that increased serum FGF23 might be an important indicator of adverse outcomes in non-CKD as well as CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arai-Nunota N, Mizobuchi M, Ogata H, Yamazaki-Nakazawa A, Kumata C, Kondo F et al (2014) Intravenous phosphate loading increases fibroblast growth factor 23 in uremic rats. PLoS One 9(3):e91096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Arnlov J, Carlsson AC, Sundstrom J, Ingelsson E, Larsson A, Lind L et al (2013) Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int 83(1):160–166

    Article  PubMed  CAS  Google Scholar 

  3. Bockmann I, Lischka J, Richter B, Deppe J, Rahn A, Fischer DC et al (2019) FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci 20(18):4634

    Article  PubMed Central  CAS  Google Scholar 

  4. Bouma-De Krijger A, Vervloet MG (2020) Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol 33(3):509–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H et al (1998) Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc Natl Acad Sci U S A 95(4):1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chanakul A, Zhang MY, Louw A, Armbrecht HJ, Miller WL, Portale AA et al (2013) FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS One 8(9):e72816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chonchol M, Dale R, Schrier RW, Estacio R (2009) Serum phosphorus and cardiovascular mortality in type 2 diabetes. Am J Med 122(4):380–386

    Article  CAS  PubMed  Google Scholar 

  8. Dai B, David V, Martin A, Huang J, Li H, Jiao Y et al (2012) A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One 7(9):e44161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Borst MH, Vervloet MG, Ter Wee PM, Navis G (2011) Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol 22(9):1603–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Emrich IE, Brandenburg V, Sellier AB, Schauerte J, Wiedenroth J, Untersteller K et al (2019) Strength of fibroblast growth factor 23 as a cardiovascular risk predictor in chronic kidney disease weaken by ProBNP adjustment. Am J Nephrol 49(3):203–211

    Article  CAS  PubMed  Google Scholar 

  11. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18(9):2600–2608

    Article  CAS  PubMed  Google Scholar 

  13. Gansevoort RT, Matsushita K, Van Der Velde M, Astor BC, Woodward M, Levey AS et al (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80(1):93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garabedian M, Holick MF, Deluca HF, Boyle IT (1972) Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci U S A 69(7):1673–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G et al (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119(19):2545–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoenderop JG, Chon H, Gkika D, Bluyssen HA, Holstege FC, St-Arnaud R et al (2004) Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice. Kidney Int 65(2):531–539

    Article  CAS  PubMed  Google Scholar 

  18. Holick MF (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81(3):353–373

    Article  CAS  PubMed  Google Scholar 

  19. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  20. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87(4):1080S–1086S

    Article  CAS  PubMed  Google Scholar 

  21. Hsu JJ, Katz R, Ix JH, De Boer IH, Kestenbaum B, Shlipak MG (2014) Association of fibroblast growth factor-23 with arterial stiffness in the multi-ethnic study of atherosclerosis. Nephrol Dial Transplant 29(11):2099–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro OM et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22(1):124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inaba M, Okuno S, Imanishi Y, Yamada S, Shioi A, Yamakawa T et al (2006) Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos Int 17(10):1506–1513

    Article  CAS  PubMed  Google Scholar 

  24. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G, Houston J et al (2013) Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin J Am Soc Nephrol 8(6):1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B et al (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24(9):2792–2796

    Article  CAS  PubMed  Google Scholar 

  27. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G et al (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 22(10):1913–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan AM, Chirinos JA, Litt H, Yang W, Rosas SE (2012) FGF-23 and the progression of coronary arterial calcification in patients new to dialysis. Clin J Am Soc Nephrol 7(12):2017–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kidney Disease: Improving Global Outcomes, CKD-MBD Update WG (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011) 7(1):1–59

    Article  Google Scholar 

  30. Koiwa F, Kazama JJ, Tokumoto A, Onoda N, Kato H, Okada T et al (2005) Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Ther Apher Dial 9(4):336–339

    Article  CAS  PubMed  Google Scholar 

  31. Kovesd CP, Quarles LD (2013) Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant 28(9):2228–2236

    Article  CAS  Google Scholar 

  32. Kuro-O M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    Article  CAS  PubMed  Google Scholar 

  33. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA et al (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71(1):31–38

    Article  CAS  PubMed  Google Scholar 

  34. London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H (2003) Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 18(9):1731–1740

    Article  PubMed  Google Scholar 

  35. Marsell R, Grundberg E, Krajisnik T, Mallmin H, Karlsson M, Mellstrom D et al (2008) Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol 158(1):125–129

    Article  CAS  PubMed  Google Scholar 

  36. Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168(15):1629–1637

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205(2):385–390

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M et al (2011) Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100(9):3719–3730

    Article  CAS  PubMed  Google Scholar 

  39. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69(11):1945–1953

    Article  CAS  PubMed  Google Scholar 

  40. Nakatani S, Nakatani A, Tsugawa N, Yamada S, Mori K, Imanishi Y et al (2015) Fibroblast growth factor-23 and Vitamin D metabolism in subjects with eGFR >/=60 ml/min/1.73 m2. Nephron 1308(2):119–126

    Article  CAS  Google Scholar 

  41. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T et al (2006) Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70(12):2141–2147

    Article  CAS  PubMed  Google Scholar 

  42. Noori N, Sims JJ, Kopple JD, Shah A, Colman S, Shinaberger CS et al (2010) Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran J Kidney Dis 4(2):89–100

    PubMed  Google Scholar 

  43. Ozaki E, Yamada S, Kuriyama N, Matsui D, Watanabe I, Koyama T et al (2018) Association of BAP with urinary albumin excretion in postmenopausal, but not premenopausal, non-CKD Japanese women. Sci Rep 8(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Park CW, Oh YS, Shin YS, Kim CM, Kim YS, Kim SY et al (1999) Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am J Kidney Dis 33(1):73–81

    Article  CAS  PubMed  Google Scholar 

  45. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152(10):640–648

    Article  PubMed  PubMed Central  Google Scholar 

  46. Perazella MA, Setaro JF (2003) Renin-angiotensin-aldosterone system: fundamental aspects and clinical implications in renal and cardiovascular disorders. J Nucl Cardiol 10(2):184–196

    Article  PubMed  Google Scholar 

  47. Pilz S, Tomaschitz A, Marz W, Drechsler C, Ritz E, Zittermann A et al (2011) Vitamin D, cardiovascular disease and mortality. Clin Endocrinol 75(5):575–584

    Article  CAS  Google Scholar 

  48. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H et al (2003) Human fibroblast growth factor-23 mutants suppress Na+^-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278(4):2206–2211

    Article  CAS  PubMed  Google Scholar 

  49. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH et al (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83(6):1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y et al (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287(1):F39–F47

    Article  CAS  PubMed  Google Scholar 

  51. Seiler S, Cremers B, Rebling NM, Hornof F, Jeken J, Kersting S et al (2011) The phosphatonin fibroblast growth factor 23 links calcium-phosphate metabolism with left-ventricular dysfunction and atrial fibrillation. Eur Heart J 32(21):2688–2696

    Article  CAS  PubMed  Google Scholar 

  52. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F et al (2004) Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 44(2):250–256

    Article  CAS  PubMed  Google Scholar 

  53. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435

    Article  CAS  PubMed  Google Scholar 

  54. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T et al (2005) Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289(5):F1088–F1095

    Article  CAS  PubMed  Google Scholar 

  55. Skalska A, Galas A, Grodzicki T et al (2012) 25-hydroxyvitamin D and physical and cognitive performance in older people with chronic conditions. Pol Arch Med Wewn 122(4):162–169

    CAS  PubMed  Google Scholar 

  56. Souma N, Isakova T, Lipiszko D, Sacco RL, Elkind MS, Derosa JT et al (2016) Fibroblast growth factor 23 and cause-specific mortality in the general population: the northern Manhattan study. J Clin Endocrinol Metab 101(10):3779–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Turan MN, Kircelli F, Yaprak M, Sisman AR, Gungor O, Bayraktaroglu S et al (2016) FGF-23 levels are associated with vascular calcification, but not with atherosclerosis, in hemodialysis patients. Int Urol Nephrol 48(4):609–617

    Article  CAS  PubMed  Google Scholar 

  58. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Article  CAS  PubMed  Google Scholar 

  59. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 282(3):C487–C493

    Article  CAS  PubMed  Google Scholar 

  60. Yoda K, Imanishi Y, Yoda M, Mishima T, Ichii M, Yamada S et al (2012) Impaired response of FGF-23 to oral phosphate in patients with type 2 diabetes: a possible mechanism of atherosclerosis. J Clin Endocrinol Metab 97(11):E2036–E2043

    Article  CAS  PubMed  Google Scholar 

  61. Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S et al (2011) Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 26(3):800–813

    Article  CAS  PubMed  Google Scholar 

  62. Yuan B, Xing Y, Horst RL, Drezner MK (2004) Evidence for abnormal translational regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase activity in the hyp-mouse. Endocrinology 145(8):3804–3812

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Q, Lin S, Tang R, Veeraragoo P, Peng W, Wu R (2010) Role of Fosinopril and valsartan on klotho gene expression induced by angiotensin II in rat renal tubular epithelial cells. Kidney Blood Press Res 33(3):186–192

    Article  CAS  PubMed  Google Scholar 

  64. Zittermann A, Iodice S, Pilz S, Grant WB, Bagnardi V, Gandini S (2012) Vitamin D deficiency and mortality risk in the general population: a meta-analysis of prospective cohort studies. Am J Clin Nutr 95(1):91–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to express our sincere gratitude to Dr. Nuraly Akimbekov, Ph.D. (Al-Farabi Kazakh National University, Kazakhstan), to help draw the illustrations.

Disclosure

None of the authors has a conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Nakatani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakatani, S., Nakatani, A., Mori, K., Emoto, M., Inaba, M., Razzaque, M.S. (2022). Fibroblast Growth Factor 23 as Regulator of Vitamin D Metabolism. In: Razzaque, M.S. (eds) Phosphate Metabolism . Advances in Experimental Medicine and Biology, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-91623-7_6

Download citation

Publish with us

Policies and ethics