Skip to main content

Phosphate-Sensing

  • Chapter
  • First Online:
Phosphate Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1362))

Abstract

The blood level of phosphate is tightly regulated in a narrow range. Hyperphosphatemia and hypophosphatemia both lead to the development of diseases, such as hyperphosphatemic tumoral calcinosis and rickets/osteomalacia, respectively. Although several humoral factors have been known to affect blood phosphate levels, fibroblast growth factor 23 (FGF23) is the principal hormone involved in the regulation of blood phosphate. This hormone is produced by bone, particularly by osteocytes and osteoblasts, and has the effect of lowering the blood level of phosphate in the renal proximal tubules. Therefore, some phosphate-sensing mechanism should exist, at least in the bone. However, the mechanisms through which bone senses changes in the blood level of phosphate, and through which the bone regulates FGF23 production remain to be fully elucidated. Our recent findings demonstrate that high extracellular phosphate phosphorylates FGF receptor 1c (FGFR1c). Its downstream extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway regulates the expression of several transcription factors and the GALNT3 gene, which encodes GalNAc-T3, which plays a role in the regulation of posttranslational modification of FGF23 protein, which in turn enhances FGF23 production. The FGFR1c-GALNT3 gene axis is considered to be the most important mechanism for regulating the production of FGF23 in bone in the response to a high phosphate diet. Thus—in the regulation of FGF23 production and blood phosphate levels—FGFR1c may be considered to function as a phosphate-sensing molecule. A feedback mechanism, in which FGFR1c and FGF23 are involved, is present in blood phosphate regulation. In addition, other reports indicate that PiT1 and PiT2 (type III sodium-phosphate cotransporters), and calcium-sensing receptor are also involved in the phosphate-sensing mechanism. In the present chapter, we summarize new insights on phosphate-sensing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe Y, Nagano M, Tada A et al (2017) Deep phosphotyrosine proteomics by optimization of phosphotyrosine enrichment and MS/MS parameters. J Proteome Res 16:1077–1086

    Article  CAS  PubMed  Google Scholar 

  2. Almaden Y, Canalejo A, Hernandez A et al (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    Article  CAS  PubMed  Google Scholar 

  3. Beck GR Jr, Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929

    Article  CAS  PubMed  Google Scholar 

  4. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A 97:8352–8357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett EP, Mandel U, Clausen H et al (2012) Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–756

    Article  CAS  PubMed  Google Scholar 

  6. Biber J, Hernando N, Forster I (2013) Phosphate transporters and their function. Annu Rev Physiol 75:535–550

    Article  CAS  PubMed  Google Scholar 

  7. Bon N, Couasnay G, Bourgine A et al (2018a) Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J Biol Chem 293:2102–2114

    Article  CAS  PubMed  Google Scholar 

  8. Bon N, Frangi G, Sourice S et al (2018b) Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2. Mol Metab 11:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown EM, Macleod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    Article  CAS  PubMed  Google Scholar 

  10. Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  11. Centeno PP, Herberger A, Mun HC et al (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10:4693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Comps-Agrar L, Dunshee DR, Eaton DL et al (2015) Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J Biol Chem 290:24166–24177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drüeke TB (2004) Modulation and action of the calcium-sensing receptor. Nephrol Dial Transplant 19(Suppl 5):V20–V26

    Article  PubMed  CAS  Google Scholar 

  14. Feng JQ, Ward LM, Liu S et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524

    Article  CAS  PubMed  Google Scholar 

  16. Florenzano P, Cipriani C, Roszko KL et al (2020) Approach to patients with hypophosphataemia. Lancet Diabetes Endocrinol 8:163–174

    Article  CAS  PubMed  Google Scholar 

  17. Frishberg Y, Ito N, Rinat C et al (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22:235–242

    Article  CAS  PubMed  Google Scholar 

  18. Fukumoto S, Yamashita T (2007) FGF23 is a hormone-regulating phosphate metabolism--unique biological characteristics of FGF23. Bone 40:1190–1195

    Article  CAS  PubMed  Google Scholar 

  19. Furdui CM, Lew ED, Schlessinger J et al (2006) Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 21:711–717

    Article  CAS  PubMed  Google Scholar 

  20. Goetz R, Mohammadi M (2013) Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 14:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325

    Article  CAS  PubMed  Google Scholar 

  22. Guagnano V, Furet P, Spanka C et al (2011) Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem 54:7066–7083

    Article  CAS  PubMed  Google Scholar 

  23. Jono S, Mckee MD, Murry CE et al (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17

    Article  CAS  PubMed  Google Scholar 

  24. Khoshniat S, Bourgine A, Julien M et al (2011) The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 68:205–218

    Article  CAS  PubMed  Google Scholar 

  25. Kimata M, Michigami T, Tachikawa K et al (2010) Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone 47:938–947

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita Y, Fukumoto S (2018) X-linked hypophosphatemia and FGF23-related Hypophosphatemic diseases: prospect for new treatment. Endocr Rev 39:274–291

    Article  PubMed  Google Scholar 

  27. Kuro-O M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  28. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  PubMed  Google Scholar 

  29. Lew ED, Furdui CM, Anderson KS et al (2009) The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal 2:ra6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin CC, Melo FA, Ghosh R et al (2012) Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149:1514–1524

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Zhou J, Tang W et al (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291:E38–E49

    Article  CAS  PubMed  Google Scholar 

  32. Mckay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121

    Article  CAS  PubMed  Google Scholar 

  33. Michigami T, Kawai M, Yamazaki M et al (2018) Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev 98:2317–2348

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 11:1762–1768

    Article  CAS  PubMed  Google Scholar 

  35. Nishino J, Yamazaki M, Kawai M et al (2017) Extracellular phosphate induces the expression of dentin matrix protein 1 through the FGF receptor in osteoblasts. J Cell Biochem 118:1151–1163

    Article  CAS  PubMed  Google Scholar 

  36. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perwad F, Azam N, Zhang MY et al (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146:5358–5364

    Article  CAS  PubMed  Google Scholar 

  38. Saito H, Maeda A, Ohtomo S et al (2005) Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    Article  CAS  PubMed  Google Scholar 

  39. Sarabipour S, Hristova K (2016) Mechanism of FGF receptor dimerization and activation. Nat Commun 7:10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimada T, Mizutani S, Muto T et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimada T, Muto T, Urakawa I et al (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182

    Article  CAS  PubMed  Google Scholar 

  42. Shimada T, Hasegawa H, Yamazaki Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  43. Slatopolsky E, Finch J, Denda M et al (1996) Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97:2534–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tagliabracci VS, Engel JL, Wiley SE et al (2014) Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A 111:5520–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takashi Y, Fukumoto S (2018) FGF23 beyond Phosphotropic hormone. Trends Endocrinol Metab 29:755–767

    Article  CAS  PubMed  Google Scholar 

  46. Takashi Y, Kosako H, Sawatsubashi S et al (2019) Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc Natl Acad Sci U S A 116:11418–11427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas L, Bettoni C, Knöpfel T et al (2017) Acute adaption to Oral or intravenous phosphate requires parathyroid hormone. J Am Soc Nephrol 28:903–914

    Article  CAS  PubMed  Google Scholar 

  48. Topaz O, Shurman DL, Bergman R et al (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36:579–581

    Article  CAS  PubMed  Google Scholar 

  49. Trokovic R, Trokovic N, Hernesniemi S et al (2003) FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 22:1811–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  51. Virkki LV, Biber J, Murer H et al (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654

    Article  CAS  PubMed  Google Scholar 

  52. White KE, Cabral JM, Davis SI et al (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76:361–367

    Article  CAS  PubMed  Google Scholar 

  53. Yamazaki Y, Tamada T, Kasai N et al (2008) Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 23:1509–1518

    Article  CAS  PubMed  Google Scholar 

  54. Yamazaki M, Ozono K, Okada T et al (2010) Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem 111:1210–1221

    Article  CAS  PubMed  Google Scholar 

  55. Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Fukumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takashi, Y., Fukumoto, S. (2022). Phosphate-Sensing. In: Razzaque, M.S. (eds) Phosphate Metabolism . Advances in Experimental Medicine and Biology, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-91623-7_4

Download citation

Publish with us

Policies and ethics