Skip to main content

WiseTex—A Virtual Textile Composites Software

  • Chapter
  • First Online:
Advanced Weaving Technology
  • 1210 Accesses

Abstract

A virtual textile composites software WiseTex builds geometrical models of woven (2D and 3D), braided (bi- and tri-axial) and warp-knitted multiaxial (non-crimp) fabrics. The chapter describes the models of woven fabrics. The models can be based on full geometrical data, provided by the user, or can calculate the equilibrium crimp state of the yarns and their deformed cross section dimensions using minimisation of the bending deformation energy and experimental data of compressibility of the yarns. The yarn interlacing topology is described using a coding system, applicable both to 2D and 3D woven fabrics. The mechanical model of the fabric repeat allows analytical calculations of the fabric resistance to flat compaction, shear and biaxial tension. The software has GUI and a command-line instruction set which allows creating interface with software for upstream (weaving) and downstream (mechanical performance of textiles and textile composites) of the textile production/performance chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedogni, E., Ivanov, D. S., Lomov, S. V., Pirondi, A., Vettori, M., & Verpoest, I. (2012). Creating finite element model of 3D woven fabrics and composites: semi-authomated solution of interpenetration problem. In 15th European Conference on Composite Materials (ECCM-15). Venice: electronic edition, s.p.

    Google Scholar 

  2. Cortelli, S. (2019). “Virtual Material Characterization: enabling efficient materials engineering for composites.” Retrieved 03.07.2019, from https://community.plm.automation.siemens.com/t5/Simcenter-Blog/Virtual-Material-Characterization-enabling-efficient-materials/ba-p/579569.

  3. Cortelli, S. (2019). “VirtualCT: realistic composite material modeling using micro-CT-based voxel approach.“ Retrieved 26.11.2019, from https://community.plm.automation.siemens.com/t5/Simcenter-Blog/Virtual-Material-Characterization-enabling-efficient-materials/ba-p/579569.

  4. Daggumati, S., Van Paepegem, W., Degrieck, J., Xu, J., Lomov, S. V., & Verpoest, I. (2010). Local damage in a 5-harness satin weave composite under static tension: Part II - Meso-FE modelling. Composites Science and Technology, 70(13), 1934–1941.

    Article  Google Scholar 

  5. Daggumati, S., Voet, E., Van Paepegem, W., Degrieck, J., Xu, J., Lomov, S. V., & Verpoest, I. (2011). Local strain in a 5-harness satin weave composite under static tension: Part II - Meso-FE analysis. Composites Science and Technology, 71(8), 1217–1224.

    Article  Google Scholar 

  6. Digimat (2019). Digimat, users’ and example manuals—e-Xstream engineering, part of Hexagon Manufacturing Intelligence.

    Google Scholar 

  7. Digimat and Sonaca (2019). Simulation of 3D woven materials in aerospace industry. (electronic resource, www.e-Xstream.com).

  8. Doitrand, A., Fagiano, C., Irisarri, F. X., & Hirsekorn, M. (2015). Comparison between voxel and consistent meso-scale models of woven composites. Composites Part A: Applied Science and Manufacturing, 73, 143–154.

    Article  Google Scholar 

  9. Farkas, L., Vanclooster, K., Erdelyi, H., Sevenois, R., Lomov, S. V., Naito, T., Urushiyama, Y., & Van Paepegem, W. (2016). Virtual material characterization process for composite materials: An industrial solution. In ECCM17 - 17th European Conference on Composite Materials Munich. electronic edition, s.p.

    Google Scholar 

  10. Ivanov, D. S., & Lomov, S. V. (2015). Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications. In P. E. Irving, & C. Soutis (Eds.), Polymer composites in the aerospace industry (pp. 21–52). Cambridge, Elsevier - Woodhead Publishers.

    Google Scholar 

  11. Ivanov, D. S., Lomov, S. V., Baudry, F., Xie, H., Van Den Broucke, B., & Verpoest, I. (2009). Failure analysis of triaxial braided composite. Composites Science and Technology, 69, 1372–1380.

    Article  Google Scholar 

  12. Iwata, A., Inoue, T., Naouar, N., Boisse, P., & Lomov, S. V. (2019). Coupled meso-macro simulation of woven fabric local deformation during draping. Composites Part A, 118, 267–280.

    Article  Google Scholar 

  13. Kyosev, Y. (2017). Möglichkeiten der TexMind Software für die Generierung von textilen Strukturen für FEM Simulationen und CAD Anwendunge 9th Saxon Simulation Meeting, Chemnitz: electronic edition.

    Google Scholar 

  14. Kyosev, Y. (2019). Automated virtual development and analysis of structures for textile wearables. In AUTEX-2019—19th World Textile Conference on Textiles at the Crossroads, Ghent, Belgium: electronic edition.

    Google Scholar 

  15. Kyosev, Y., Lomov, S. V., Kuster, K. (2016). The numerical prediction of the tensile behaviour of multilayer woven tapes made by multifilament yarns. In Y. Kyosev (Ed.), Recent developments in braiding and narrow weaving (pp. 69–82). Springer.

    Google Scholar 

  16. Lomov, S. V. (1995). Prediction of geometry and mechanical properties of woven technical fabrics with mathematical modelling. Dept. Mechanical Technology of Fibrous Materials. St.-Petersburg, SPbSUTD. Thesis: Doctor of Technical Sciences (Dr Habil.): 486 (in Russian).

    Google Scholar 

  17. Lomov, S. V. (2007). Virtual testing for material formability. In A. Long (Ed.), Composite forming technologies (pp. 80–116). Woodhead.

    Chapter  Google Scholar 

  18. Lomov, S. V. (2015). From a virtual textile to a virtual woven composite. In M. H. Aliabadi (Ed.), Woven Composites (Computational and Experimental Methods in Structures, vol. 6). London, Imperial College Press: 109–140.

    Google Scholar 

  19. Lomov, S. V., Bernal, E., Ivanov, D. S., Kondratiev, S. V., & Verpoest, I. (2005). Homogenisation of a sheared unit cell of textile composites: FEA and approximate inclusion model. Revue Européenne de Mécanique Numérique (former Revue européenne des éléments finis), 14(6–7), 709–728.

    Article  Google Scholar 

  20. Lomov, S. V., Bogdanovich, A. E., Ivanov, D. S., Hamada, K., Kurashiki, T., Zako, M., Karahan, M., & Verpoest, I. (2009). Finite element modelling of progressive damage in non-crimp 3D orthogonal weave and plain weave E-glass composites. In 2nd World Conference on 3D Fabrics, Greenville, SC: CD edition.

    Google Scholar 

  21. Lomov, S. V., & Gusakov, A. V. (1995). Modellirung von drei-dimensionalen gewebe Strukturen. Technische Textilen, 38, 20–21.

    Google Scholar 

  22. Lomov, S. V., Gusakov, A. V., Huysmans, G., Prodromou, A., & Verpoest, I. (2000). Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60, 2083–2095.

    Article  Google Scholar 

  23. Lomov, S. V., Huysmans, G., & Verpoest, I. (2001). Hierarchy of textile structures and architecture of fabric geometric models. Textile Research Journal, 71(6), 534–543.

    Article  Google Scholar 

  24. Lomov, S. V., Ivanov, D. S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., & Hirosawa, S. (2007). Meso-FE modelling of textile composites: Road map, data flow and algorithms. Composites Science and Technology, 67, 1870–1891.

    Article  Google Scholar 

  25. Lomov, S. V., & Primachenko, B. M. (1992). Mathematical modelling of two-layered woven fabric under tension. Technologia Tekstilnoy Promyshlennosty, 1, 49–53 (in Russian).

    Google Scholar 

  26. Lomov, S. V., & Truevtzev, N. N. (1995). A software package for the prediction of woven fabrics geometrical and mechanical properties. Fibres & Textiles in Eastern Europe, 3(2), 49–52.

    Google Scholar 

  27. Lomov, S. V., & Verpoest, I. (2000). Compression of woven reinforcements: A mathematical model. Journal of Reinforced Plastics and Composites, 19(16), 1329–1350.

    Article  Google Scholar 

  28. Lomov, S. V., & Verpoest, I. (2006). Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Composites Science and Technology, 66, 919–933.

    Article  Google Scholar 

  29. Lomov, S. V., Verpoest, I., Cichosz, J., Hahn, C., Ivanov, D. S., & Verleye, B. (2014). Meso-level textile composites simulations: Open data exchange and scripting. Journal of Composite Materials, 48, 621–637.

    Article  Google Scholar 

  30. Lomov, S. V., Verpoest, I., Peeters, T., Roose, D., & Zako, M. (2002). Nesting in textile laminates: Geometrical modelling of the laminate. Composites Science and Technology, 63(7), 993–1007.

    Article  Google Scholar 

  31. Lomov, S. V., Verpoest, I., & Robitaille, F. (2005). Manufacturing and internal geometry of textiles. In A. C. Long (Ed.), Design and manufacture of textile composites (pp. 1–60). Woodhead.

    Google Scholar 

  32. Long, A. (2000). Process modelling for textile composites. In International Conference on Virtual Prototiping EUROPAM 2000 (pp. 1–17). Nantes.

    Google Scholar 

  33. Melchior, M. A., Duflot M., Gerard J. S., Melchior S., Hebert P., Adam L., & Assaker, R. (2015). End-to-End FE Based Homogenization of Woven Composites. In Proceedings of the American Society for Composites: Thirtieth Technical Conference (pp. 39–46).

    Google Scholar 

  34. Peirce, F. T. (1937). The geometry of cloth structure. Journal of the Textile Institute, 28(3), T45–T96.

    Article  Google Scholar 

  35. Sakakibara, T., Yamamoto, T., Yamada, G., Imaoku, A., Ohtagaki, R., & Zako, M. (2018). Recent developments in “COMPOSITES DREAM” for meso-FE modelling of advanced materials. In IOP Conf. Series: Materials Science and Engineering (13th International Conference on Textile Composites (TEXCOMP-13) (Vol. 406, p. 012027).

    Google Scholar 

  36. Tabatabaei, S. A., & Lomov, S. V. (2015). Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso- finite element modelling of textile composites. Computers & Structures, 152, 142–154.

    Article  Google Scholar 

  37. Tabatabaei, S. A., Lomov, S. V., & Verpoest, I. (2014). Assessment of embedded element technique in meso-FE modelling of fibre reinforced composites. Composite Structures, 107, 436–446.

    Article  Google Scholar 

  38. Tabatabaei, S. A., Swolfs, Y., Wu, H., & Lomov, S. V. (2015). Full-field strain measurements and meso-FE modelling of hybrid carbon/self-reinforced polypropylene. Composite Structures, 132, 864–873.

    Article  Google Scholar 

  39. Thomason, L. (2012). “TinyXML.“ 2012, from http://www.grinninglizard.com/tinyxml/.

  40. Vanaerschot, A., Cox, B. N., Lomov, S. V., & Vandepitte, D. (2016). Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry. Computer Methods in Applied Mechanics and Engineering, 310, 906–934.

    Article  MathSciNet  Google Scholar 

  41. Verpoest, I., & Lomov, S. V. (2005). Virtual textile composites software Wisetex: Integration with micro-mechanical, permeability and structural analysis. Composites Science and Technology, 65(15–16), 2563–2574.

    Article  Google Scholar 

  42. Vorobiov, O., Tabatabaei, S. A., & Lomov, S. V. (2017). Mesh superposition applied to meso-FE modelling of fibre reinforced composites: Cross-comparison of implementations. International Journal for Numerical Methods in Engineering, 111, 1003–1024.

    Article  MathSciNet  Google Scholar 

  43. W3C. (2008). “Extensible Markup Language (XML) 1.0 (Fifth Edition).“ 2012, from http://www.w3.org/TR/REC-xml/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Lomov .

Editor information

Editors and Affiliations

Appendices

Appendix A. Textile Objects in WiseTex and Their Parameters

The textile data is organised in a hierarchy of data levels for fibres, yarns and the fabric [23]. The easy and open way of implementing this hierarchy is use of XML (Extensible Markup Language) [43], that defines a set of rules for encoding documents in a format that is both human—and machine-readable. The XML data fields are briefly described below. The full description of the TEX data fields can be found in the WiseTex software documentation (WiseTex v3.0 User’s Manual, KU Leuven, 2012).

The fibre data include fibre geometry and transversely orthotropic elastic constants for the fibre material.

The yarn data include general yarn parameters such as linear density, shape and dimensions of the cross sections, data on the fibrous structure of the yarn and also description of the yarn mechanical behaviour in compression, bending and tension. The latter group of the data is not compulsory. For example, if the compression data is omitted, the sections of the yarn will retain the specified dimensions in the fabric; if the bending data is omitted, then crimp of the yarns in the fabric must be specified by the user, as crimp balance calculation will not be possible etc. Note that the yarn data describe the yarn per se—some of the specified parameters can be modified after the fabric geometry model has been built, for example, the yarn cross section dimensions in the fabric can be different because of the yarn compression. See Sect. 3 for description of the use of the yarn parameters in the geometry model.

The woven fabric data contain data on the yarns placement density (the distance between the yarn centre lines p), the weave pattern and the placement of different yarns in warp and weft fabric. The Weave data section contains a weave code sequences (see Sect. 2). The ModellingParameters data section holds information on the computational parameters used for building the geometrical model.

The XML TEX data can be modified either manually, using an XML editor or directly the text representation of the XML file, or via a custom program, hence open for integration in custom simulation software. The freeware and open source libraries for manipulation of XML files are available for all programming languages, for example [39]. The TEX XML data is also open in a sense that it can be augmented for different MLTPs, but the presence of already defined fields will ensure compatibility of the formats with WiseTex.

The generic description of the fabric geometry (see Sect. 3.3) is stored as arrays of values for a set of cross-sections Si along the yarn midline.

Once the geometrical model is generated by WiseTex, the textile inpt data in principle is not needed any more for use in subsequent processing. However, it could be beneficial for some cases to keep specific textile data together with the geometry data created for them.

Appendix B. Command Line Components of WiseTex Package

Table 3 shows the functionality and command syntax of the command line versions of WiseTex package components. The syntax of the commands in Table 2 is simplified for the needs of the discussions in this paper; the full syntax definition can be found in the software documentation.

Table 3 Functionality and command syntax of command line components of WiseTex package

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lomov, S. (2022). WiseTex—A Virtual Textile Composites Software. In: Kyosev, Y., Boussu, F. (eds) Advanced Weaving Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-91515-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91515-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91514-8

  • Online ISBN: 978-3-030-91515-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics