Skip to main content

Application of Adaptive Filtering Techniques for Filtering Induced Seismic Noise

  • Conference paper
  • First Online:
Problems of Geocosmos–2020

Abstract

The complexity and versatility of modern research requires the development and improvement of methods and tools for the operational processing of seismic data. Often, the main task in seismic data processing is to efficiently and reliably extract useful components from the recorded signal for their further use. Obviously, in this case, seismologists need to use the entire arsenal of methods and algorithms for reducing in modern information-measuring systems induced noise caused by various kinds of dynamic processes. An adaptive filter can be proposed as one of the options for solving such problems of filtering a seismic signal in the presence of interference caused by various kinds of dynamic processes. This article is devoted to the problems of using adaptive filters to separate seismic signals with simultaneous digital recording of a seismic signal and atmospheric pressure. The article shows that using adaptive filtering, it is possible to significantly improve the signal-to-noise ratio and successfully to separate seismic signals masked by induced interference. Thus, using the adaptive filtering method, it is possible to solve the problem of improving the data quality of seismic instruments by removing unwanted induced noise from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashilov, I.P., Daragan, S.K., Kabychenko, N.V.: Noise parameters of seismic devices. In: Bulletin of the National Nuclear Center of the Republic of Kazakhstan, vol. 2, pp. 19–29 (2002). (in Russian)

    Google Scholar 

  2. Kislov, K.V.: Humidity as an interfering factor in seismometry. Nat. Tech. Sci. 6(38), 161–162 (2008)

    Google Scholar 

  3. Kislov, K.V., Gravirov, V.V.: Research of environment influence on self-noise broadband seismic equipments. In: Computational Seismology, vol. 42, 240 p. The Krasand Publishing Group, Moscow (2013). (in Russian)

    Google Scholar 

  4. Rykov, A.V.: Astasation of a Seismometer Using Negative Feedback. Seismicheskie pribory (Seismic Devices), vol. 14, pp. 3–5, Nauka, Moscow (1981). (in Russian)

    Google Scholar 

  5. Rykov, A.V.: Problems of Metrology of Broadband Seismic Equipment. Seismicheskie pribory (Seismic Devices), vol. 27, pp. 66–76, OIFZ RAS, Moscow (1997). (in Russian)

    Google Scholar 

  6. Rykov, A.V.: Modeling a Seismometer, 109 p. OIFZ RAS, Moscow (1996). (in Russian)

    Google Scholar 

  7. Rykov, A.V.: Representation of an Electronic Seismometer Using Natural Frequencies. Seismicheskie pribory (Seismic Devices). vol. 27, pp. 39–42. OIFZ RAS, Moscow (1997). (in Russian)

    Google Scholar 

  8. Rykov, A.V.: Seismometer and Earth oscillations. Phizika Zemli (Phys. Earth) 2, 76–80 (1992). (in Russian)

    Google Scholar 

  9. Rykov, A.V., Bashilov, I.P.: Ultra-Wideband Digital Set of Seismometers. Seismicheskie pribory (Seismic Devices), vol. 27, pp. 3–6. OIFZ RAS, Moscow (1997). (in Russian)

    Google Scholar 

  10. Rykov, A.V., Marchenkov, A.Y.: Modeling a Seismometer in the Area of its Instability. Seismicheskie pribory (Seismic Devices), vol. 24, pp. 90–95. Nauka, Moscow (1993). (in Russian)

    Google Scholar 

  11. Rykov, A.V., Marchenkov, A.Y.: Seismometer with Feedback on the Example of Wieland’s Seismometer. Seismicheskie pribory (Seismic Devices), vol. 23, pp. 54–58. Nauka, Moscow (1992). (in Russian)

    Google Scholar 

  12. Wieland, E., Stein, J.M.: A Digital Very-Broad-Band Seismograph. Ann. Geophys. Ser. B 4(3), 227–232 (1986)

    Google Scholar 

  13. Wieland, E., Streckeisen, G.: The leaf-spring seismometer—design and performance. BSSA 72, 2349–2367 (1982)

    Google Scholar 

  14. Wielandt, E.: Common Seismic Sensors. Datasheet DS 5.1. In: Bormann, P. (ed.) New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Center for Geosciences, Potsdam (2012). https://doi.org/10.2312/GFZ.NMSOP-2

  15. Wielandt, E.: Noise in electronic seismograph systems. Z. Geophys. 39, 597–602 (1973)

    Google Scholar 

  16. Feofilaktov, V.D.: Interference in Long-Period Seismometry, 100 p. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  17. Theophilaktov, V.D.: Noises of Vertical Seismometers, 69 p. Nauka, Moscow (1972). (in Russian)

    Google Scholar 

  18. Linkov, E.M., Petrova, L.N., Dunaev, A.V.: Observations of Long-Period Earth Oscillations with a Horizontal Seismometer on an Anti-Inclined Platform. Seismicheskie pribory (Seismic Devices), vol. 21, pp. 90–96. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  19. Linkov, E.M.: Seismic Phenomena. 248 p., Publishing house of Leningrad State University, Leningrad (1987). (in Russian)

    Google Scholar 

  20. Linkov, E.M.: Superlong-Period Horizontal Seismometric Channel. Seismicheskie pribory (Seismic Devices), vol. 23, pp. 48–53. Nauka, Moscow (1992). (in Russian)

    Google Scholar 

  21. Linkov, E.M., Tipisev, S.Y., Butsenko, V.V.: Noise Immunity of a Long-Period Seismograph and Analysis of its Records. Geophysical Apparatus, vol. 75, pp. 78–87. Nedra, Leningrad (1982). (in Russian)

    Google Scholar 

  22. Hutt, C.R., Nigbor, R.L., Evans, J.R.: USGS Open-File Report 2009-1055. In: Proceedings of the Guidelines for Seismometer Testing Workshop, 48 p., Albuquerque, New Mexico (2009)

    Google Scholar 

  23. Likhodeev, D.V., Gravirov, V.V., Kislov, K.V., Dolov, S.M.: Precision Narrow-Range Differential Temperature Sensors. Nauchnoe Priborostroenie (Scientific Instrumentation) 29(1), 11–16, Moscow (2019). (in Russian)

    Google Scholar 

  24. Likhodeev, D.V., Gravirov, V.V., Kislov, K.V.: Precision differential thermometers for the study of thermal processes based on the North Caucasus geophysical observatory. Sci. Technol. Dev. 97(1), 15–25 (2018). (in Russian)

    Google Scholar 

  25. Chernov, V.V., Gushchin, V.V.: Features of the alignment resonance of seismic instruments. In: Proceedings of the Fifth Scientific Conference on Radiophysics Dedicated to the 100th Anniversary of the Birth of A.A. Andronov, 7 May 2001, pp. 252–253, Nizhny Novgorod (2001)

    Google Scholar 

  26. Kolesnikov, Y.A., Matsievsky, S.A.: Noise of Vertical Long-Period Seismometers and Methods for their Reduction. Computational Seismology, vol. 12, pp. 125–144. Nauka, Moscow (1979). (in Russian)

    Google Scholar 

  27. Ruscak, S., Singer, L.: Using histogram techniques to measure A/D converter noise. Anal. Dial. 29–2, 7–8 (1995)

    Google Scholar 

  28. Adushkin, V.V., Kharlamov, V.A., Rybnov, Y.S.: Characterization of the Infrasonic Background at Stations Dubna and Zalesovo. In: Physical Processes in Geospheres: Their Manifestation and Interaction (Geophysics of Strong Disturbances): Collection of Scientific Works, pp. 166–175, IDG RAN, Moscow (1999)

    Google Scholar 

  29. Trnkoczy, A., Bormann, P., Hanka, W., Holcomb, L.G., Nigbor, R.L.: Site selection, preparation and installation of seismic stations (Chapter 7). In: Bormann, P. (ed.) New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Center for Geosciences, Potsdam, 108 p. (2012). https://doi.org/10.2312/GFZ.NMSOP-2

  30. Withers, M.M., Aster, R.C., Young, C.J., Chael, E.P.: High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. BSSA 86(5), 1507–1515 (1996)

    Google Scholar 

  31. Beauduin, P., Lognonne, P., Montagner, J., Cacho, S., Karczewski, J., Morand, M.: The effects of atmospheric pressure changes on seismic signals, or how to improve the quality of a station. BSSA 86, 1760–1799 (1996)

    Google Scholar 

  32. Kolesnikov, Y.A., Toxez, M.N.: Decreasing the Sensitivity of Vertical Seismometers to Fluctuations in Atmospheric Pressure. Computational Seismology, vol. 14, pp. 183–188. Nauka, Moscow (1982). (in Russian)

    Google Scholar 

  33. Gravirov, V.V.: Methods for Reducing the Noise of a Seismic Gyrotiltmeter. Thesis ... Cand. Phys.-mat. Sci., 120 p. Moscow (2009). (in Russian)

    Google Scholar 

  34. Kislov, K.V.: Theory and Methods of Protecting Broadband Seismometers from Environmental Influences. Thesis ... Cand. Phys.-mat. Sci., 171 p. Moscow (2009). (in Russian)

    Google Scholar 

  35. Gravirov, V.V.: Experimental results of registration of slopes of soil of atmospheric origin with a gyrotiltmeter of the KST-1 type. Estestvennie i technicheskie nauki (Nat. Tech. Sci.) 38(6), 159–160 (2008). (in Russian)

    Google Scholar 

  36. Douze, E.J., Sorrells, G.G.: Prediction of pressure-generated Earth motion using optimum filters. BSSA 65(3), 637–650 (1975)

    Google Scholar 

  37. Kislov, K.V., Gravirov, V.V., Labuncov, M.: The Analysis of Wind Seismic Noise and Algorithms of Its Determination. In: Eos Trans. AGU, Fall Meet. Suppl., Abstract S21C-2079, San Francisco, USA (2010)

    Google Scholar 

  38. Leontiev, V.I.: Methods and Ways of Increasing the Accuracy of Gravi-Inertial Equipment. Thesis ... Cand. Phys.-mat. n., Moscow (2003). (in Russian)

    Google Scholar 

  39. Orfanidis, S.J.: Optimum Signal Processing. An Introduction, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  40. Ketkov, Y.L., Ketkov, A.Y., Shultz, M.M.: MATLAB 7: Programming, Numerical Methods, 742 p. BHV-Petersburg, Sankt-Peterburg (2005). (in Russian)

    Google Scholar 

  41. Gravirov, V.V.: Optimal filters application for allocation of seismic signals in long period channel of the gyrotiltmeter. Seismic Instrum. 46(1), 13–20 (2010)

    Article  Google Scholar 

  42. Haykin, S.: Adaptive filter theory, 936 p. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

  43. Starovoit, Y.O.: Sensitivity of the Obninsk seismic station to micro-oscillations of atmospheric pressure. Seismic Devices, no. 30, pp. 28–39. Nauka, Moscow (1998). (in Russian)

    Google Scholar 

  44. Shynk, J.J.: Frequency-domain and multirate adaptive filtering. IEEE Signal Process. Mag. 9(1), 14–37 (1992)

    Article  Google Scholar 

  45. Yanevich, Y.M., Pavleino, M.A.: Active and digital filters, 280 p., SPb (1999). (in Russian)

    Google Scholar 

  46. Gravirov, V.V.: The Program of Adaptive Filtering of the Seismic Signal Taking into Account the Temperature Regime of the Seismometer. Certificate Software Registration Rights, Russian Federation, No. 2019665143, November 20, (2019)

    Google Scholar 

  47. Gravirov, V.V., Kislov, K.V.: Adaptive Optimal Filter Program (Slave_Opt_Filter). Certificate Software Registration Rights, Russian Federation, No. 2017661235, October 6, (2017)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the staff of the Seismological Department of the Royal Observatory of Belgium for their invaluable assistance in organizing the experiment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gravirov, V.V., Kislov, K.V. (2022). Application of Adaptive Filtering Techniques for Filtering Induced Seismic Noise. In: Kosterov, A., Bobrov, N., Gordeev, E., Kulakov, E., Lyskova, E., Mironova, I. (eds) Problems of Geocosmos–2020. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-91467-7_23

Download citation

Publish with us

Policies and ethics