Skip to main content

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13114))

  • 574 Accesses

Abstract

Producing accurate forecasts is an essential part of successful inventory management for any retail business. Previous research has shown that the clustering of time series data into disjoint clusters can reduce the forecast error, eventually leading to cost savings. A common measure used to cluster time series data is Dynamic Time Warping. While it can handle time series of different length and guarantees to provide the optimal alignment, it is computationally expensive and assumes that one time series is a stretched non-linear version of another time series. For datasets containing intermittent time series, i.e. showing no clear structure, DTW is not the best suited method. In this paper, we propose a new framework that uses Simple Exponential Smoothing (SES) and a Self-Organizing Map (SOM) that is able to improve the clustering performance for clusters containing intermittent and non-intermittent time series. Using LightGBM as the forecasting model, we evaluate our approach on a real-world dataset, and find that the computational time can be reduced substantially compared to DTW when using a combination of SOM and LightGBM for both intermittent and non-intermittent time series while maintaining similar levels of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering a decade review. Inf. Syst. 53, 16–38 (2015). https://doi.org/10.1016/j.is.2015.04.007

  2. Ariannezhad, M., Schelter, S., de Rijke, M.: Demand forecasting in the presence of privileged information. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 46–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0_4

    Chapter  Google Scholar 

  3. Chen, I.-F., Lu, C.-J.: Sales forecasting by combining clustering and machine-learning techniques for computer retailing. Neural Comput. Appl. 28(9), 2633–2647 (2016). https://doi.org/10.1007/s00521-016-2215-x

    Article  Google Scholar 

  4. Contreras, P., Murtagh, F.: Hierarchical clustering. In: Handbook of Cluster Analysis (February), 103–124. Chapman and Hall/CRC, New York (2015). https://doi.org/10.1201/b19706

  5. Croston, J.D.: Forecasting and stock control for intermittent demands (1970–1977) . Oper. Res. Q. 23(3), 289–303 (1972). http://www.jstor.org/stable/3007885

  6. Darst, B.F., Malecki, K.C., Engelman, C.D.: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 19(1), 1–6 (2018)

    Google Scholar 

  7. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20(1), 5–10 (2004). https://doi.org/10.1016/j.ijforecast.2003.09.015, https://www.sciencedirect.com/science/article/pii/S0169207003001134

  8. Jha, A., Ray, S., Seaman, B., Dhillon, I.S.: Clustering to forecast sparse time-series data (2015)

    Google Scholar 

  9. Kamini, V., Vadlamani, R., Prinzie, A., Van den Poel, D.: Cash demand forecasting in ATMS by clustering and neural networks. Eur. J. Oper. Res. 232, 383–392 (2014). https://doi.org/10.1016/j.ejor.2013.07.027

  10. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  11. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybernet. 69, 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  12. Kohonen, T.: Self-organizing feature maps. In: Self-organization and Associative Memory, pp. 119–157. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-88163-3

  13. Lu, C.J., Kao, L.J.: A clustering-based sales forecasting scheme by using extreme learning machine and ensembling linkage methods with applications to computer server. Eng. Appl. Artif. Intell. 55, 231–238 (2016). https://doi.org/10.1016/j.engappai.2016.06.015, http://dx.doi.org/10.1016/j.engappai.2016.06.015

  14. Lu, C.J., Wang, Y.W.: Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. Int. J. Prod. Econ. 128(2), 603–613 (2010). https://doi.org/10.1016/j.ijpe.2010.07.004

  15. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889 (2018)

    Google Scholar 

  16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M5 accuracy competition: results, findings and conclusions (October), pp. 1–44 (2020). https://www.researchgate.net/publication/344487258

  17. Nikolopoulos, K.: We need to talk about intermittent demand forecasting. Eur. J. Oper. Res. 291(2), 549–559 (2021). https://doi.org/10.1016/j.ejor.2019.12.046

    Article  MathSciNet  MATH  Google Scholar 

  18. Paparrizos, J., Gravano, L.: Fast and accurate time-series clustering. ACM Trans. Database Syst. 42(2) (2017). https://doi.org/10.1145/3044711

  19. Petropoulos, F., Kourentzes, N.: Forecast combinations for intermittent demand. J. Oper. Res. Soc. 66(6), 914–924 (2015). https://doi.org/10.1057/jors.2014.62

    Article  Google Scholar 

  20. Puspita, P.E., Änkaya, T., Akansel, M.: Clustering-based sales forecasting in a Forklift Distributor. UluslararasÄ Muhendislik Arastirma ve Gelistirme Dergisi, pp. 1–17, February 2019. https://doi.org/10.29137/umagd.473977

  21. Seaman, B.: Considerations of a retail forecasting practitioner. Int. J. Forecast. 34(4), 822–829 (2018). https://doi.org/10.1016/j.ijforecast.2018.03.001, https://doi.org/10.1016/j.ijforecast.2018.03.001

  22. Shalizi, C.: Distances Between Clustering, Hierarchical Clustering. Data Mining (September), pp. 36–350 (2009). www.stat.cmu.edu/cshalizi/350

  23. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast. 36(1), 75–85 (2020). https://doi.org/10.1016/j.ijforecast.2019.03.017, https://doi.org/10.1016/j.ijforecast.2019.03.017

  24. Syntetos, A.A., Boylan, J.E.: On the bias of intermittent demand estimates. Int. J. Prod. Econ. 71(1–3), 457–466 (2001)

    Article  Google Scholar 

  25. Syntetos, A.A., Boylan, J.E.: The accuracy of intermittent demand estimates. Int. J. Forecast. 21(2), 303–314 (2005)

    Article  Google Scholar 

  26. Syntetos, A.A., Zied Babai, M., Gardner, E.S.: Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping. J. Bus. Res. 68(8), 1746–1752 (2015). https://doi.org/10.1016/j.jbusres.2015.03.034, http://dx.doi.org/10.1016/j.jbusres.2015.03.034

  27. Tsay, R.S.: Time series and forecasting: Brief history and future research. J. Am. Stat. Assoc. 95(450), 638–643 (2000). http://www.jstor.org/stable/2669408

  28. Van Craenendonck, T., Blockeel, H.: Using internal validity measures to compare clustering algorithms. In: ICML, pp. 1–8 (2015)

    Google Scholar 

  29. Xu, S., Chan, H.K., Chng, E., Tan, K.H.: A comparison of forecasting methods for medical device demand using trend-based clustering scheme. J. Data Inf. Manag. 2(2), 85–94 (feb 2020). https://doi.org/10.1007/s42488-020-00026-y

  30. Zhou, H., Yang, Y., Qian, W.: Tweedie gradient boosting for extremely unbalanced zero-inflated data (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom van de Looij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Looij, T.v.d., Ariannezhad, M. (2021). Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2021. Lecture Notes in Computer Science(), vol 13114. Springer, Cham. https://doi.org/10.1007/978-3-030-91445-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91445-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91444-8

  • Online ISBN: 978-3-030-91445-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics