Skip to main content

A Novel Network Representation of SARS-CoV-2 Sequencing Data

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Abstract

The unprecedented level of genome sequencing during the SARS-CoV-2 pandemic brought about the challenge of processing this genomic data. However, the state-of-the-art phylogenetic methods were mostly designed for analyzing data that are significantly sparser and require extensive subsampling of strains. We present \((\varepsilon ,\tau )\)-MSN, a novel tool that reconstructs a viral genetic relatedness network based on genetic distances, that can process hundreds of thousands of sequences in under several hours. We applied \((\varepsilon ,\tau )\)-MSN to the global COVID-19 outbreak data and were able to build a genetic network on more than 100,000 SARS-CoV-2 sequences. We show that \((\varepsilon ,\tau )\)-MSN can accurately detect transmission events and build a genetic network with significantly higher assortativity with respect to continent and country attributes of SARS-CoV-2 samples. The source code for this software suite is available at https://github.com/Sergey-Knyazev/eMST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexiev, I., et al.: Molecular epidemiological analysis of the origin and transmission dynamics of the HIV-1 CRF01\(\_\)AE sub-epidemic in Bulgaria. Viruses 13(1), 116 (2021)

    Article  CAS  Google Scholar 

  2. Alexiev, I., et al.: Molecular epidemiology of the HIV-1 subtype b sub-epidemic in Bulgaria. Viruses 12(4), 441 (2020)

    Article  CAS  Google Scholar 

  3. Bandelt, H.J., Forster, P., Rohl, A.: Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999)

    Article  CAS  Google Scholar 

  4. Campbell, E.M., et al.: MicrobeTrace: retooling molecular epidemiology for rapid public health response. PLOS Comput. Biol. 17(9), e1009300 (2021)

    Article  CAS  Google Scholar 

  5. Campbell, E.M., et al.: Detailed transmission network analysis of a large opiate-driven outbreak of HIV infection in the united states. J. Infect. Dis. 216(9), 1053–1062 (2017)

    Article  Google Scholar 

  6. Campbell, F., Didelot, X., Fitzjohn, R., Ferguson, N., Cori, A., Jombart, T.: outbreaker2: a modular platform for outbreak reconstruction. BMC Bioinformatics 19(S11) (2018). https://doi.org/10.1186/s12859-018-2330-z

  7. Campo, D.S., et al.: Next-generation sequencing reveals large connected networks of intra-host HCV variants. BMC Genomics 15(S5) (2014). https://doi.org/10.1186/1471-2164-15-s5-s4

  8. Campo, D.S., et al.: Accurate genetic detection of hepatitis c virus transmissions in outbreak settings. J. Infect. Dis. 213(6), 957–965 (2015)

    Article  Google Scholar 

  9. Campo, D.S., Zhang, J., Ramachandran, S., Khudyakov, Y.: Transmissibility of intra-host hepatitis c virus variants. BMC Genomics 18(S10) (2017). https://doi.org/10.1186/s12864-017-4267-4

  10. Excoffier, L., Smouse, P.E.: Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136(1), 343–359 (1994)

    Article  CAS  Google Scholar 

  11. Fauver, J.R., et al.: Coast-to-coast spread of SARS-CoV-2 in the United States revealed by genomic epidemiology (2020). https://doi.org/10.1101/2020.03.25.20043828

  12. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates is an imprint of Oxford University Press, paperback edn., September 2003. https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=0878931775

  13. Forster, P., Forster, L., Renfrew, C., Forster, M.: Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. 117(17), 9241–9243 (2020)

    Article  CAS  Google Scholar 

  14. Glebova, O., et al.: Inference of genetic relatedness between viral quasispecies from sequencing data. BMC Genomics 18(S10) (2017). https://doi.org/10.1186/s12864-017-4274-5

  15. Gonzalez-Reiche, A.S., et al.: Introductions and early spread of SARS-CoV-2 in the New York city area. Science 369(6501), 297–301 (2020)

    Article  CAS  Google Scholar 

  16. Grande, K.M., Schumann, C.L., Ocfemia, M.C.B., Vergeront, J.M., Wertheim, J.O., Oster, A.M.: Transmission patterns in a low HIV-morbidity state — Wisconsin, 2014–2017. MMWR. Morb. Mortal. Wkly. Rep. 68(6), 149–152 (2019). https://doi.org/10.15585/mmwr.mm6806a5

  17. Houldcroft, C.J., Beale, M.A., Breuer, J.: Clinical and biological insights from viral genome sequencing. Nat. Rev. Microbiol. 15(3), 183–192 (2017). https://doi.org/10.1038/nrmicro.2016.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klinkenberg, D., Backer, J., Didelot, X., Colijn, C., Wallinga, J.: New method to reconstruct phylogenetic and transmission trees with sequence data from infectious disease outbreaks (2016)

    Google Scholar 

  19. Knyazev, S., Hughes, L., Skums, P., Zelikovsky, A.: Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Briefings Bioinform. 22(1), 96–108 (2020)

    Article  Google Scholar 

  20. Knyazev, S., et al.: Accurate assembly of minority viral haplotypes from next-generation sequencing through efficient noise reduction. Nucleic Acids Res. 49, e102 (2021)

    Article  CAS  Google Scholar 

  21. Longmire, A.G., et al.: Ghost: global hepatitis outbreak and surveillance technology. BMC Genomics 18(S10) (2017). https://doi.org/10.1186/s12864-017-4268-3

  22. Melnyk, A., Knyazev, S., Vannberg, F., Bunimovich, L., Skums, P., Zelikovsky, A.: Using earth mover’s distance for viral outbreak investigations. BMC Genomics 21(S5) (2020). https://doi.org/10.1186/s12864-020-06982-4

  23. Melnyk, A., et al.: Clustering based identification of SARS-CoV-2 subtypes. In: Jha, S.K., Măndoiu, I., Rajasekaran, S., Skums, P., Zelikovsky, A. (eds.) ICCABS 2020. LNCS, vol. 12686, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79290-9_11

    Chapter  Google Scholar 

  24. Novikov, D., Knyazev, S., Grinshpon, M., Baykal, P.I., Skums, P., Zelikovsky, A.: Scalable reconstruction of SARS-CoV-2 phylogeny with recurrent mutations. J. Comput. Biol. (to appear)

    Google Scholar 

  25. Oster, A.M., et al.: Identifying clusters of recent and rapid HIV transmission through analysis of molecular surveillance data. JAIDS J. Acquir. Immune Defic. Syndr. 79(5), 543–550 (2018)

    Article  Google Scholar 

  26. Pond, S.L.K., Weaver, S., Brown, A.J.L., Wertheim, J.O.: HIV-TRACE (TRAnsmission cluster engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol. Biol. Evol. 35(7), 1812–1819 (2018)

    Google Scholar 

  27. Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., Roth, V.: HIV haplotype inference using a propagating Dirichlet process mixture model. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(1), 182–191 (2014)

    Article  Google Scholar 

  28. Sanjuán, R., Domingo-Calap, P.: Mechanisms of viral mutation. Cell. Mol. Life Sci. 73(23), 4433–4448 (2016)

    Article  Google Scholar 

  29. Skums, P., Kirpich, A., Baykal, P.I., Zelikovsky, A., Chowell, G.: Global transmission network of SARS-CoV-2: from outbreak to pandemic (2020). https://doi.org/10.1101/2020.03.22.20041145

  30. Skums, P., et al.: QUENTIN: reconstruction of disease transmissions from viral quasispecies genomic data. Bioinformatics 34(1), 163–170 (2017)

    Article  Google Scholar 

  31. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

    Article  CAS  Google Scholar 

  32. Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993)

    CAS  PubMed  Google Scholar 

  33. Wymant, C., et al.: PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. 35(3), 719–733 (2017). https://doi.org/10.1093/molbev/msx304

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

DN, SK, and AZ were partially supported by NSF grants 1564899 and 16119110 and by NIH grant 1R01EB025022-01. PS was partially supported by NIH grant 1R01EB025022-01 and NSF grant 2047828. SK was partially supported by the GSU Molecular Basis of Disease Fellowship. SM was partially supported by NSF grant 2041984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Zelikovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knyazev, S. et al. (2021). A Novel Network Representation of SARS-CoV-2 Sequencing Data. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics