Skip to main content

The Mechanisms Involved in the Decreased Egg Production in Chicken at High Ambient Temperatures (Review)

  • Conference paper
  • First Online:
Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021) (AFE 2021)

Abstract

High ambient temperature is known as a factor limiting the productive performance in poultry. Comfortable temperature for modern egg producing chicken crosses is 21–22 ℃; higher temperatures can detrimentally affect the well-being and productivity. The temperatures above 32–35 ℃ can result in serious difficulties with the thermal balance in chicken; long exposure to these temperatures together with the inability to prompt compensatory body heat losses will result in the heat stress decreasing feed consumption, egg production and quality, and increasing the mortality levels. Different mechanisms underlying these effects are reviewed in the study presented: the disturbance of the reproductive system due to reduced blood supply and enhancement of the peripheral blood circulation; reduced absorbing ability of the intestine due to the imbalances in the intestinal microbiota and structural alterations in the intestinal walls; the suppressive effects of corticosterone and prolactin on the adrenal-gonadal axis, including suppression of the follicular growth in the ovary by corticosterone via the decrease in the availability of vitellogenin; inhibition of the hypothalamic-pituitary-gonadal axis involving the inhibition of the secretion of gonadotropin releasing hormone (GnRH) in the hypothalamus, disturbance of GnRH-induced release of gonadotropins (follicle stimulating and lutheinizing hormones) in the pituitary resulting in the decrease in the secretion of steroid hormones (estrogen and progesterone) in the ovary; multifaceted interactions between high temperature, decreased feed consumption, and hormonal imbalance; excessive production of the active forms of oxygen and imbalance between the latter and antioxidants resulting in the disturbances in the ovulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maak, S., Melesse, A., Schmidt, R., Von Lengerken, G.: Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. Br. Poult. Sci. 44(1), 133–138 (2003). https://doi.org/10.1080/0007166031000085319

    Article  Google Scholar 

  2. Melesse, A., Maak, S., Von Lengerken, G.: The performance of naked neck and their F1 crosses with Lohmann White and New Hampshire chicken breeds under long-term heat stress conditions. Ethiop. J. Anim. Product. 5(1), 91–106 (2005)

    Google Scholar 

  3. Ahmad, T., Sarwar, M.: Dietary electrolyte balance: implications in heat stressed broilers. World’s Poult. Sci. J. 62(04), 638–653 (2006). https://doi.org/10.1017/S0043933906001188

    Article  Google Scholar 

  4. Daghir, N.J.: Broiler feeding and management in hot climates. In: Daghir, N.J., (ed.) Poultry Production in Hot Climate, pp. 227–260. CAB International, Oxfordshire (2008)

    Google Scholar 

  5. Al-Saffar, A.A., Rose, S.P.: Ambient temperature and the egg laying characteristics of laying fowl. World’s Poult. Sci. J. 58(3), 317–332 (2002). https://doi.org/10.1079/WPS2002002

    Article  Google Scholar 

  6. Imangulov, S., Kavtarashvili, A., Manukyan, V.: The effects of high ambient temperature on the physiology and productivity in layers. Ptitsevodstvo 9, 29–30 (2005)

    Google Scholar 

  7. McDaniel, C.D., Bramwell, R.K., Howarth, J.B.: The male contribution to broiler breeder heat induced infertility as determined by sperm-egg penetration and sperm storage within the hen’s oviduct. Poult. Sci. 75(12), 1546–1554 (1996). https://doi.org/10.3382/ps.0751546

    Article  Google Scholar 

  8. Kavtarashvili, A., Kolokolnikova, T.: The problem of stress and its solutions. Zhivotnovodstvo Rossiyi 5–6, 17–20 (2010)

    Google Scholar 

  9. Austic, R.E.: Feeding poultry in hot and cold climates. In: Yousef, M.K. (ed.) Stress Physiology in Livestock: Poultry III, vol. 3, pp 123–136. CRC Press, Boca Raton (1985)

    Google Scholar 

  10. Howlider, M.A.R., Rose, S.P.: Temperature and the growth of broilers. World’s Poult. Sci. J. 43(3), 228–237 (1987). https://doi.org/10.1079/WPS19870015

    Article  Google Scholar 

  11. Fisinin, V.I., A.Sh.: Heat stress in poultry. I. Danger, related physiological changes and symptoms. Agric. Biol. 50(2), 162–171 (2015). https://doi.org/10.15389/agrobiology.2015.2.162eng

  12. Fisinin, V.I., Sh, K.A., Kolokolnikova, T.N.: Modern strategy of struggle with heat stress in poultry. Veterinaria 7, 9–14 (2014)

    Google Scholar 

  13. Lukić, M., Pavlovski, Z., Krbić, Z.: Adequate calcium nutrition and quality of egg shell and bones in layers - Innovative approach. Biotech. Anl. Husband 27(3), 485–497 (2011). https://doi.org/10.2298/BAH1103485L

    Article  Google Scholar 

  14. Shtele, A.L.: Formation of biologically valuable eggs and productivity in layer crosses. Poult. Poul. Prod. 6, 19–23 (2011)

    Google Scholar 

  15. Nys, Y., Guyot, N.: Egg formation and chemistry. In: Nys, Y., Bain, M., Van Immerseel, F. (eds.) Improving the Safety and Quality of Eggs and Egg Products, Food Science Technology and Nutrition, pp. 83–132 (2011). https://doi.org/10.1533/9780857093912.2.83

  16. Sidorenko, L.I., Shcherbatov, V.I.: The Biology of Chicken, p. 244. Krasnodar, KubGAU (2016)

    Google Scholar 

  17. Sah, N., Mishra, B.: Regulation of egg formation in the oviduct of laying hen. World’s Poult. Sci. J. 74(3), 509–522 (2018). https://doi.org/10.1017/S0043933918000442

    Article  Google Scholar 

  18. Johnson, A.L., Woods, D.C.: Ovarian dynamics and follicle development. In: Jamieson, B.G.M. (ed.) Reproductive Biology and Phylogeny of Birds, vol. 6A, pp. 243–277. Science Publishers, Enfield (2007)

    Google Scholar 

  19. Rangel, P.L., Gutierrez, C.G.: Reproduction in hens: Is testosterone necessary for the ovulatory process? Gen. Compar. Endocrin. 203(1), 250–261 (2014). https://doi.org/10.1016/j.ygcen.2014.03.040

    Article  Google Scholar 

  20. Williams, T.D.: Avian reproduction, overview: In: Knobil, E., Neil, J.D. (eds.) Encyclopedia of Reproduction, vol. 1, pp. 325–326. Academic Press, New York (1998)

    Google Scholar 

  21. Scanes, C.G.: Introduction to endocrinology: Pituitary Gland. In: Whittow, G.C. (ed.) Sturkie’s Avian Physiology, 5th edn., vol. 26, pp. 437–460 (2000). https://doi.org/10.1016/B978-012747605-6/50017-1

  22. Walzem, R.L.: Lipoproteins and the laying hen: form follows function. Poultry Avian Biol. Rev. 7(1), 31–64 (1996)

    Google Scholar 

  23. Kawashima, M., Takahashi, T., Kamiyoshiand, M., Tanaka, K.: Effects of progesterone, estrogen, and androgen on progesterone receptor binding in hen oviduct uterus (shell gland). Poult. Sci. 75(2), 257–260 (1996). https://doi.org/10.3382/ps.0750257

    Article  Google Scholar 

  24. Johnson, A.L.: Reproduction in the Female. In: Sturkie’s Avian Physiology (6th ed.), pp. 635–665, London, UK (2015)

    Google Scholar 

  25. Van der Klein, S.A.S., Zuidhof, M.J., Bédécarrats, G.Y.: Diurnal and seasonal dynamics affecting egg production in meat chickens: a review of mechanisms associated with reproductive dysregulation. Anim. Repr. Sci. 213, 106257 (2020). https://doi.org/10.1016/j.anireprosci.2019.106257

    Article  Google Scholar 

  26. Johnson, A.L.: Regulation of follicle differentiation by gonadotropins and growth factor. Poult. Sci. 72(1), 867–873 (1993). https://doi.org/10.3382/ps.0720867

    Article  Google Scholar 

  27. Johnson, A.L.: The avian ovarian hierarchy: A balance between follicle differentiation and atresia. Avian Poult. Biol. Rev. 7(2–3), 99–110 (1996)

    Google Scholar 

  28. Kala, M., Shaikh, M.V., Nivsarkar, M.: Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Repr. Med. Biol. 16(1), 28–35 (2017). https://doi.org/10.1002/rmb2.12013

    Article  Google Scholar 

  29. Porter, T.E., Hargis, B.M., Silsby, J.L., El Halawani, M.E.: Characterization of dissimilar steroid production by granulosa, theca internal and theca external cells during follicular maturation in the turkey (Meleagris gallopavo). Gen. Compar. Endocr. 84(1), 1–8 (1991). https://doi.org/10.1016/0016-6480(91)90058-E

    Article  Google Scholar 

  30. Sauveur, B., de Reviers, M.D.: Egg quality. In: Sauveur, B., De Reviers, M. (eds.) Reproduction des volailles et production des oeufs, pp. 377–436. INRA, Paris (1988)

    Google Scholar 

  31. Nitta, H., Osawa, Y., Bahr, J.M.: Immunolocalisation of steroidogenic cells in small follicles of chicken ovary: anatomical arrangement and location of steroidogenic cells change during follicular development. Domestic Anim. Endocr. 8(4), 587–594 (1991). https://doi.org/10.1016/0739-7240(91)90028-I

    Article  Google Scholar 

  32. Campbell, J.R., Kenealy, M.D., Campbell, K.L.: Physiology of egg laying. In: Animal Sciences. The Biology, Care and Production of Domestic Animal. 4th ed., pp. 283–294. McGraw-Hill Higher Education (2003)

    Google Scholar 

  33. Onagbesan, O.M., Metayer, S., Tona, K., et al.: Effects of genotype and feed allowance on plasma luteinizing hormones, follicle-stimulating hormones, progesterone, estradiol levels, follicle differentiation, and egg production rates of broiler hens. Poult. Sci. 85(7), 1245–1258 (2006). https://doi.org/10.1093/ps/85.7.1245

    Article  Google Scholar 

  34. Rozenboim, I., Tako, E., Gal-Garber, O., et al.: The effect of heat stress on ovarian function of laying hens. Poult. Sci. 86(8), 1760–1765 (2007). https://doi.org/10.1093/ps/86.8.1760

    Article  Google Scholar 

  35. Marsh, R.L., Dawson, W.R.: Avian adjustments to cold. In: Wang, L.C.H. (eds.) Animal Adaptation to Cold. Advances in Comparative and Environmental Physiology, vol. 4, pp. 205–253. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-74078-7_6

  36. Song, J., Xiao, K., Ke, Y.L., et al.: Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 93(3), 581–588 (2014). https://doi.org/10.3382/ps.2013-03455

    Article  Google Scholar 

  37. Varasteh, S., Braber, S., Akbari, P., et al.: Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS One 10, 1–18 (2015). https://doi.org/10.1371/journal.pone.0138975

    Article  Google Scholar 

  38. Akinyemi, F.T., Bello, S.F., Uyanga, V.A. et al.: Heat stress and gut microbiota: effects on poultry productivity. Inter. J. Poul. Sci. 19(7), 294–302 (2020). http://www.pjbs.org/ijps/ijps.htm

  39. Oguntunji, A.O., Alabi, O.M.: Influence of high environmental temperature on egg production and shell quality: a review. World’s Poult. Sci. J. 66(04), 739–749 (2010). https://doi.org/10.1017/S004393391000070X

    Article  Google Scholar 

  40. Etches, R.J., Williams, J.B., Rsaza, J.: Effects of corticosterone and dietary changes in the domestic hen on ovarian function, plasma LH and steroids and the response to exogenous LH-RH. Reproduction 70(1), 121–130 (1984). https://doi.org/10.1530/jrf.0.0700121

    Article  Google Scholar 

  41. Wang, X.J., Liu, L., Zhao, J.P., et al.: Stress impairs the reproduction of laying hens: an involvement of energy. World’s Poult. Sci. J. 73(4), 845–856 (2017). https://doi.org/10.1017/S0043933917000794

    Article  Google Scholar 

  42. Halawani, E.L., Silsby, M.E., Behnke, J.L., et al.: Effect of ambient temperature on serum prolactin and luteinizing hormone levels during the reproductive life cycle of the female turkey (Meleagris gallopavo). Biol. Reprod. 30(4), 809–815 (1984). https://doi.org/10.1095/biolreprod30.4.809

  43. Donoghue, D.J., Krueger, B.F., Hargis, B.M., et al.: Thermal stress reduces serum luteinizing hormone and bioassayable hypothalamic content of luteinizing hormone-releasing hormone in hens. Biol. Reprod. 41(3), 419–424 (1989). https://doi.org/10.1095/biolreprod41.3.419

    Article  Google Scholar 

  44. Youngren, O.M., El Halawani, M.E., Silsby, J.L., Phillips, R.E.: Intracranial prolactin perfusion induces incubation behavior in turkey hens. Biol. Reprod. 44(3), 425–431 (1991). https://doi.org/10.1095/biolreprod44.3.425

    Article  Google Scholar 

  45. Rozenboim, I., Tabibzadeh, C., Silsby, J.L., El Halawani, M.E.: Effect of ovine prolactin administration on hypothalamic Vasoactive Intestinal Peptide (VIP), gonadotropin releasing hormone I and II content, and anterior pituitary VIP receptors in laying Turkey hen. Biol. Reprod. 48(6), 1246–1250 (1993). https://doi.org/10.1095/biolreprod48.6.1246

    Article  Google Scholar 

  46. You, S., Foster, L.K., Silsby, J.L., et al.: Sequence analysis of the turkey LH subunit and its regulation by gonadotropin-releasing hormone and prolactin in cultured pituitary cells. J. Mol. Endocr. 14(1), 117–129 (1995). https://doi.org/10.1677/jme.0.0140117

    Article  Google Scholar 

  47. Rivier, C., Rivest, S.: Effect of stress on the activity of hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol. Reprod. 45(4), 523–532 (1991). https://doi.org/10.1095/biolreprod45.4.523

    Article  Google Scholar 

  48. El Halawani, M.E., Rozenboim, I.: The ontogeny and control of incubation behaviour in turkeys. Poult. Sci. 72(5), 906–911 (1993). https://doi.org/10.3382/ps.0720906/

    Article  Google Scholar 

  49. Renema, R.A., Robinson, F.E., Proudman, J.A., et al.: Effects of body weight and feed allocation during sexual maturation in broiler breeder hens 2. Ovarian morphology and plasma hormone profile. Poult. Sci. 78(5), 629–639 (1999). http://dx.doi.org/https://doi.org/10.1093/ps/78.5.629

  50. Mahmoud, K.Z., Beck, M.M., Scheideler, S.E., et al.: Acute high environmental temperature and calcium-estrogen relationship in the hen. Poult. Sci. 75(12), 1555–1562 (1996). https://doi.org/10.3382/ps.0751555

    Article  Google Scholar 

  51. Zhou, W.T., Fijita, M., Yamamoto, S., et al.: Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. Poult. Sci. 77(5), 644–647 (1998). https://doi.org/10.1093/ps/77.5.644

    Article  Google Scholar 

  52. Deng, W., Dong, X.F., Tong, J.M., Zhang, Q.: The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91(3), 575–582 (2012). https://doi.org/10.3382/ps.2010-01293

    Article  Google Scholar 

  53. Mashaly, M.M., Hendricks, G.L., Kalama, M.A., Patterson, P.H., et al.: Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83(6), 889–894 (2004). https://doi.org/10.1093/ps/83.6.889

  54. Farnell, M.B., Moore, R.W., McElroy, A.P., et al.: Effect of prolonged heat stress in single-comb white leghorn hens on progeny resistance to Salmonella enteritidis organ invasion. Avian. Dis. 45(2), 479–485 (2001)

    Article  Google Scholar 

  55. Yang, L., Tan, G.Y., Fu, Y.Q., et al.: Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Compar. Biochem. Phys. Part C Tox. Pharm. 151(2), 204–208 (2010). https://doi.org/10.1016/j.cbpc.2009.10.010

    Article  Google Scholar 

  56. Sahin, K., Orhan, C., Tuzcu, M., et al.: Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult. Sci. 95(5), 1088–1095 (2016). https://doi.org/10.3382/ps/pew012

    Article  Google Scholar 

  57. Farag, M.R., Alagawany, M.: Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 76, 101–106 (2018). https://doi.org/10.1016/j.jtherbio.2018.07.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kavtarashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kavtarashvili, A. (2022). The Mechanisms Involved in the Decreased Egg Production in Chicken at High Ambient Temperatures (Review). In: Muratov, A., Ignateva, S. (eds) Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021). AFE 2021. Lecture Notes in Networks and Systems, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-030-91405-9_93

Download citation

Publish with us

Policies and ethics