Skip to main content

Embedding Time-Series Features into Generative Adversarial Networks for Intrusion Detection in Internet of Things Networks

  • Chapter
  • First Online:
Generative Adversarial Learning: Architectures and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 217))

Abstract

In recent years, Generative Adversarial Networks (GAN) have become powerful industrial tools to facilitate various learning tasks, including anomaly detection. This chapter studies a number of GAN architectures used for anomaly detection in the data stream. Moreover, a novel approach is proposed for embedding the dynamic characteristics of the data stream into the GAN-based detector structures. In this process, a GAN model is also proposed for efficient estimation of a confidence measure during the operation that reflects how well samples can be assigned to benign data. Furthermore, this chapter designs an intrusion detection system by developing a GAN-based anomaly detector. To do this, we study the effect of the proposed approach and the selected GAN-based approaches in detecting malicious intrusions in an Internet of Things (IoT) network. Experiments are evaluated in terms of false alarm and missed alarm detection rates. The obtained results indicate the effectiveness of the proposed GAN-based detection approach for the respective task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) Computer Vision - ACCV 2018, pp. 622–637. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  2. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers-part i: Detecting nonstationary changes. IEEE Trans. Neural Networks 19(7), 1145–1153 (2008)

    Article  Google Scholar 

  3. Bashar, M.A., Nayak, R.: Tanogan: Time series anomaly detection with generative adversarial networks. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1778–1785 (2020)

    Google Scholar 

  4. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 9428–9433 (2019)

    Article  Google Scholar 

  5. Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.: Good semi-supervised learning that requires a bad gan (2017). ArXiv:1705.09783

  6. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning p. arXiv preprint (2016). ArXiv:1605.09782

  7. Farajzadeh-Zanjani, M., Hallaji, E., Razavi-Far, R., Saif, M.: Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems. Neurocomputing 440, 101–110 (2021)

    Article  Google Scholar 

  8. Farajzadeh-Zanjani, M., Hallaji, E., Razavi-Far, R., Saif, M., Parvania, M.: Adversarial semi-supervised learning for diagnosing faults and attacks in power grids. IEEE Transactions on Smart Grid pp. 1–1 (2021)

    Google Scholar 

  9. Farajzadeh-Zanjani, M., Razavi-Far, R., Saif, M.: Efficient sampling techniques for ensemble learning and diagnosing bearing defects under class imbalanced condition. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7 (2016)

    Google Scholar 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  11. Hajisalem, V., Babaie, S.: A hybrid intrusion detection system based on abc-afs algorithm for misuse and anomaly detection. Comput. Netw. 136, 37–50 (2018)

    Article  Google Scholar 

  12. Hallaji, E., Razavi-Far, R., Palade, V., Saif, M.: Adversarial learning on incomplete and imbalanced medical data for robust survival prediction of liver transplant patients. IEEE Access 9, 73641–73650 (2021)

    Article  Google Scholar 

  13. Hallaji, E., Razavi-Far, R., Saif, M.: Detection of malicious scada communications via multi-subspace feature selection. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020)

    Google Scholar 

  14. Hallaji, E., Razavi-Far, R., Saif, M.: DLIN: Deep ladder imputation network. IEEE Transactions on Cybernetics pp. 1–13 (2021)

    Google Scholar 

  15. Han, X., Chen, X., Liu, L.P.: Gan ensemble for anomaly detection. arXiv preprint (2020). ArXiv:2012.07988

  16. Hassani, H., Hallaji, E., Razavi-Far, R., Saif, M.: Unsupervised concrete feature selection based on mutual information for diagnosing faults and cyber-attacks in power systems. Eng. Appl. Artif. Intell. 100, 104150 (2021)

    Article  Google Scholar 

  17. Hassani, H., Razavi-Far, R., Saif, M., Palade, V.: Generative adversarial network-based scheme for diagnosing faults in cyber-physical power systems. Sensors 21(15) (2021)

    Google Scholar 

  18. Jabez, J., Muthukumar, B.: Intrusion detection system (ids): Anomaly detection using outlier detection approach. Procedia Computer Science 48, 338–346 (2015). International Conference on Computer, Communication and Convergence (ICCC 2015)

    Google Scholar 

  19. Jordon, J., Yoon, J., van der Schaar, M.: Knockoffgan: Generating knockoffs for feature selection using generative adversarial networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  20. Lee, C.K., Cheon, Y.J., Hwang, W.Y.: Studies on the gan-based anomaly detection methods for the time series data. IEEE Access 9, 73201–73215 (2021)

    Article  Google Scholar 

  21. Li, D., Chen, D., Goh, J., Ng, S.K.: Anomaly detection with generative adversarial networks for multivariate time series. arXiv preprint (2019). ArXiv:1809.04758

  22. Concept drift detection based on fisher’s exact test: de Lima Cabral, D.R., de Barros, R.S.M. Inf. Sci. 442–443, 220–234 (2018)

    Google Scholar 

  23. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2016)

    Google Scholar 

  24. Moustafa, N., Turnbull, B., Choo, K.K.R.: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things. IEEE Internet Things J. 6(3), 4815–4830 (2019)

    Article  Google Scholar 

  25. Odena, A.: Semi-supervised learning with generative adversarial networks (2016). ArXiv:1606.01583

  26. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans (2017)

    Google Scholar 

  27. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  28. Pauwels, E.J., Ambekar, O.: One class classification for anomaly detection: Support vector data description revisited. In: P. Perner (ed.) Advances in Data Mining. Applications and Theoretical Aspects, pp. 25–39. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

    Google Scholar 

  29. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using gans with constrained latent representations p. arXiv preprint (2019). http://arxiv.org/abs/1903.08550. ArXiv:1903.08550

  30. Razavi-Far, R., Cheng, B., Saif, M., Ahmadi, M.: Similarity-learning information-fusion schemes for missing data imputation. Knowl.-Based Syst. 187, 104805 (2020)

    Article  Google Scholar 

  31. Razavi-Far, R., Davilu, H., Palade, V., Lucas, C.: Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing 72(13), 2939–2951 (2009). Hybrid Learning Machines (HAIS 2007) / Recent Developments in Natural Computation (ICNC 2007)

    Google Scholar 

  32. Razavi-Far, R., Hallaji, E., Farajzadeh-Zanjani, M., Saif, M.: A semi-supervised diagnostic framework based on the surface estimation of faulty distributions. IEEE Trans. Industr. Inf. 15(3), 1277–1286 (2019)

    Article  Google Scholar 

  33. Razavi-Far, R., Hallaji, E., Saif, M., Ditzler, G.: A novelty detector and extreme verification latency model for nonstationary environments. IEEE Trans. Industr. Electron. 66(1), 561–570 (2019)

    Article  Google Scholar 

  34. Razavi-Far, R., Kinnaert, M.: Incremental design of a decision system for residual evaluation: a wind turbine application*. IFAC Proceedings Volumes 45(20), 343–348 (2012). 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes

    Google Scholar 

  35. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  36. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: J. Dy, A. Krause (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  37. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.T., Shen, D. (eds.) Information Processing in Medical Imaging, pp. 146–157. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  38. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  39. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.R.: Adversarially learned anomaly detection (2018)

    Google Scholar 

  40. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, p. 665–674. Association for Computing Machinery, New York, NY, USA (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN-2021-02968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Hallaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hallaji, E., Razavi-Far, R., Saif, M. (2022). Embedding Time-Series Features into Generative Adversarial Networks for Intrusion Detection in Internet of Things Networks. In: Razavi-Far, R., Ruiz-Garcia, A., Palade, V., Schmidhuber, J. (eds) Generative Adversarial Learning: Architectures and Applications. Intelligent Systems Reference Library, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-030-91390-8_8

Download citation

Publish with us

Policies and ethics