Skip to main content

Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives

  • Chapter
  • First Online:
Generative Adversarial Learning: Architectures and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 217))

Abstract

Magnetic Resonance Imaging (MRI) is a vital component of medical imaging. When compared to other image modalities, it has advantages such as the absence of radiation, superior soft tissue contrast, and complementary multiple sequence information. However, one drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities, limiting its usage in some clinical applications when imaging time is critical. Traditional compressive sensing based MRI (CS-MRI) reconstruction can speed up MRI acquisition, but suffers from a long iterative process and noise-induced artefacts. Recently, Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images from heavily undersampled k-space data, allowing for much faster MRI scanning. However, there are still some hurdles to tackle. For example, directly training DNNs based on L1/L2 distance to the target fully sampled images could result in blurry reconstruction because L1/L2 loss can only enforce overall image or patch similarity and does not take into account local information such as anatomical sharpness. It is also hard to preserve fine image details while maintaining a natural appearance. More recently, Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality. The encoder obtains a latent space for the undersampling image, and the image is reconstructed by the decoder using the GAN loss. In this chapter, we review the GAN powered fast MRI methods with a comparative study on various anatomical datasets to demonstrate the generalisability and robustness of this kind of fast MRI while providing future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kieren, G.H.: Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys. Med. Biol. R297–322 (2015)

    Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Google Scholar 

  3. Yang, G., Yu, S., Dong, H., Slabaugh, G., Pier, L.D., Ye, X., Liu, F., Arridge, S., Keegan, J., Guo, Y., Firmin, D.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Google Scholar 

  4. Suetens, P.: Fundamentals of Medical Imaging, 2nd edn. Cambridge University Press (2009)

    Google Scholar 

  5. Mansfield, P.: Multi-planar image formation using NMR spin echoes. J. Phys. C: Solid State Phys. (1977)

    Google Scholar 

  6. Hennig, J., Nauerth, A., Friedburg, H.: RARE imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3(6), 823–833 (1986)

    Article  Google Scholar 

  7. Haase, A., Frahm, J., Matthaei, D., Merboldt, K.-D.: FLASH imaging. Rapid NMR Imaging Using Low Flip-Angle Pulses. Technical report (1986)

    Google Scholar 

  8. Zisselman, E., Adler, A., Elad, M.: Compressed learning for image classification: a deep neural network approach. In: Handbook of Numerical Analysis, vol. 19, pp. 3–17. Elsevier B.V., Jan 2018

    Google Scholar 

  9. Fair, M.J., Gatehouse, P.D., DiBella, E.V.R., Firmin, D.N.: A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance, Aug 2015

    Google Scholar 

  10. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Google Scholar 

  11. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)

    Google Scholar 

  12. Eksioglu, E.M.: Decoupled algorithm for MRI reconstruction using nonlocal block matching model: BM3D-MRI. J. Math. Imaging Vis. 56(3), 430–440 (2016)

    Google Scholar 

  13. Yue, H., Ongie, G., Ramani, S., Jacob, M.: Generalized higher degree total variation (HDTV) regularization. IEEE Trans. Image Process. 23(6), 2423–2435 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liu, Y., Cai, J.-F., Zhan, Z., Guo, D., Ye, J., Chen, Z., Xiaobo, Q.: Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging. PLOS ONE 10(4), e0119584 (2015)

    Google Scholar 

  15. Mohammad H. Kayvanrad, A. Jonathan McLeod, John S.H. Baxter, Charles A. McKenzie, and Terry M. Peters. Stationary wavelet transform for under-sampled MRI reconstruction. Magnetic Resonance Imaging, 32(10):1353–1364, dec 2014

    Google Scholar 

  16. M. Guerquin-Kern, M. Haberlin, K. P. Pruessmann, and M. Unser. A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Transactions on Medical Imaging, 30(9):1649–1660, sep 2011

    Google Scholar 

  17. Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T., Knoll, F.: Learning a variational network for reconstruction of accelerated MRI data. Mag. Reson. Med. 79(6), 3055–3071 (2018)

    Google Scholar 

  18. Chen, J., Yang, G., Khan, H., Zhang, H., Zhang, Y., Zhao, S., Mohiaddin, R., Wong, T., Firmin, D., Keegan, J.: JAS-GAN: generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets. IEEE J. Biomed. Health Inf. (2021)

    Google Scholar 

  19. Yinzhe, W., Hatipoglu, S., Alonso-Álvarez, D., Gatehouse, P., Li, B., Gao, Y., Firmin, D., Keegan, J., Yang, G.: Fast and automated segmentation for the three-directional multi-slice cine myocardial velocity mapping. Diagnostics 11(2), 346 (2021)

    Article  Google Scholar 

  20. Wu, Y., Hatipoglu, S., Alonso-Álvarez, D., Gatehouse, P., Firmin, D., Keegan, J., Yang, G.: Automated multi-channel segmentation for the 4D myocardial velocity mapping cardiac MR. In: Medical Imaging 2021: Computer-Aided Diagnosis, vol. 11597, pp. 115970P. International Society for Optics and Photonics (2021)

    Google Scholar 

  21. Jin, Yao, Y., G., Fang, Y., Li, R., Xiaomei, X., Liu, Y., Lai, X.: 3D PBV-Net: an automated prostate MRI data segmentation method. Comput. Biol. Med. 128, 104160 (2021)

    Google Scholar 

  22. Zhou, X., Ye, Q., Jiang, Y., Wang, M., Niu, Z., Menpes-Smith, W., Fang, E.F., Liu, Z., Xia, J., Yang, G.: Systematic and comprehensive automated ventricle segmentation on ventricle images of the elderly patients: a retrospective study. Frontiers Aging Neurosci. 12 (2020)

    Google Scholar 

  23. Liu, Y., Yang, G., Hosseiny, M., Azadikhah, A., Mirak, S.A., Miao, Q., Raman, S.S., Sung, K.: Exploring uncertainty measures in bayesian deep attentive neural networks for prostate zonal segmentation. IEEE Access 8, 151817–151828 (2020)

    Google Scholar 

  24. Ferreira, P.F., Martin, R.R., Scott, A.D., Khalique, Z., Yang, G., Nielles-Vallespin, S., Pennell, D.J., Firmin, D.N.: Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation. Magn. Reson. Med. 84(5), 2801–2814 (2020)

    Google Scholar 

  25. Li, M., Wang, C., Zhang, H., Yang, G.: Mv-ran: multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis. Comput. Biol. Med. 120, 103728 (2020)

    Google Scholar 

  26. Liu, Y., Yang, G., Mirak, S.A., Hosseiny, M., Azadikhah, A., Zhong, X., Reiter, R.E., Lee, Y., Raman, S.S., Sung, K.: Automatic prostate zonal segmentation using fully convolutional network with feature pyramid attention. IEEE Access 7, 163626–163632 (2019)

    Google Scholar 

  27. Zhuang, X., Li, L., Payer, C., Štern, D., Urschler, M., Heinrich, M.P., Oster, J., Wang, C., Smedby, Ö., Bian, C., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019)

    Google Scholar 

  28. Mo, Y., Liu, F., McIlwraith, D., Yang, G., Zhang, J., He, T., Guo, Y. (2018) The deep poincaré map: A novel approach for left ventricle segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 561–568. Springer

    Google Scholar 

  29. Zhang, W., Yang, G., Huang, H., Yang, W., Xu, X., Liu, Y., Lai, X.: ME-Net: multi-encoder net framework for brain tumor segmentation. Int. J. Imaging Syst. Technol. (2021)

    Google Scholar 

  30. Yang, G., Chen, J., Gao, Z., Li, S., Ni, H., Angelini, E., Wong, T., Mohiaddin, R., Nyktari, E., Wage, R., et al.: Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Fut. Gen. Comput. Syst. 107, 215–228 (2020)

    Article  Google Scholar 

  31. Li, L., Fuping, W., Yang, G., Lingchao, X., Wong, T., Mohiaddin, R., Firmin, D., Keegan, J., Zhuang, X.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)

    Google Scholar 

  32. Zhang, L., Yang, G., Ye, X.: Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons. J. Med. Imaging 6(2), 024001 (2019)

    Google Scholar 

  33. Yang, G., Zhuang, X., Khan, H., Nyktari, E., Haldar, S., Li, L., Wage, R., Ye, X., Slabaugh, G., Mohiaddin, R. et al.: Left atrial scarring segmentation from delayed-enhancement cardiac MRI images: a deep learning approach. Cardiovasc. Imaging Image Anal. 109 (2018)

    Google Scholar 

  34. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2018). arXiv:1811.02629

  35. Mok, T.C.W., Chung, A.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4644–4653 (2020)

    Google Scholar 

  36. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 204–212. Springer (2017)

    Google Scholar 

  37. Wu, G., Kim, M., Wang, Q., Munsell, B.C., Shen, D.: Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63(7), 1505–1516 (2015)

    Google Scholar 

  38. Chenchu, X., Zhang, D., Chong, J., Chen, B., Li, S.: Synthesis of gadolinium-enhanced liver tumors on nonenhanced liver MR images using pixel-level graph reinforcement learning. Med. Image Anal. 69, 101976 (2021)

    Google Scholar 

  39. Wang, C., Yang, G., Papanastasiou, G., Tsaftaris, S.A., Newby, D.E., Gray, C., Macnaught, G., MacGillivray, T.J.: DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis. Inf. Fusion 67, 147–160 (2021)

    Google Scholar 

  40. Gao, Z., Zhang, H., Dong, S., Sun, S., Wang, X., Yang, G., Wu, W., Li, S., de Albuquerque, V.H.C.: Salient object detection in the distributed cloud-edge intelligent network. IEEE Netw. 34(2), 216–224 (2020)

    Google Scholar 

  41. Wang, C., Dong, S., Zhao, X., Papanastasiou, G., Zhang, H., Yang, G.: Saliencygan: deep learning semisupervised salient object detection in the fog of IOT. IEEE Trans. Ind. Inf. 16(4), 2667–2676 (2019)

    Article  Google Scholar 

  42. Ali, A.-R., Li, J., Kanwal, S., Yang, G., Hussain, A., O’Shea, S.J.: A novel fuzzy multilayer perceptron (F-MLP) for the detection of irregularity in skin lesion border using dermoscopic images. Frontiers Med. 7 (2020)

    Google Scholar 

  43. Yang, M., Xiao, X., Liu, Z., Sun, L., Guo, W., Cui, L., Sun, D., Zhang, P., Yang, G.: Deep retinanet for dynamic left ventricle detection in multiview echocardiography classification. Sci. Program. (2020)

    Google Scholar 

  44. Li, M., Dong, S., Zhang, K., Gao, Z., Wu, X., Zhang, H., Yang, G., Li, S.: Deep learning intra-image and inter-images features for co-saliency detection. In: BMVC, vol. 291 (2018)

    Google Scholar 

  45. Dong, S., Sun, G.S., Wang, X., Li, M., Zhang, H., Yang, G., Liu, H., Li, S., et al.: Holistic and deep feature pyramids for saliency detection. In: BMVC, p. 67 (2018)

    Google Scholar 

  46. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Annual Conference on Medical Image Understanding and Analysis, pp. 506–517. Springer (2017)

    Google Scholar 

  47. Hu, S., Gao, Y., Niu, Z., Jiang, Y., Li, L., Xiao, X., Wang, M., Fang, E.F., Menpes-Smith, W., Xia, J., et al.: Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access 8, 118869–118883 (2020)

    Google Scholar 

  48. Cao, Y., Wang, Z., Liu, Z., Li, Y., Xiao, X., Sun, L., Zhang, Y., Hou, H., Zhang, P., Yang, G.: Multiparameter synchronous measurement with IVUS images for intelligently diagnosing coronary cardiac disease. IEEE Trans. Instrum. Meas. (2020)

    Google Scholar 

  49. Zhang, N., Yang, G., Gao, Z., Chenchu, X., Zhang, Y., Shi, R., Keegan, J., Lei, X., Zhang, H., Fan, Z., et al.: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291(3), 606–617 (2019)

    Article  Google Scholar 

  50. Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., Aviles-Rivero, A.I., Etmann, C., McCague, C., Beer, L., et al.: Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review (2020). arXiv:2008.06388

  51. Soltaninejad, M., Zhang, L., Lambrou, T., Yang, G., Allinson, N., Ye, X.: MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: International MICCAI Brainlesion Workshop, pp. 204–215. Springer (2017)

    Google Scholar 

  52. Jin, C., Yu, H., Ke, J., Ding, P., Yi, Y., Jiang, X., Duan, X., Tang, J., Chang, D.T., Wu, X., et al.: Predicting treatment response from longitudinal images using multi-task deep learning. Nat. Commun. 12(1), 1–11 (2021)

    Google Scholar 

  53. Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018)

    Google Scholar 

  54. Chen, Y., Firmin, D., Yang, G.: Wavelet improved GAN for MRI reconstruction. In: Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, p. 1159513. International Society for Optics and Photonics (2021)

    Google Scholar 

  55. Lv, J., Wang, C., Yang, G.: PIC-GAN: a parallel imaging coupled generative adversarial network for accelerated multi-channel MRI reconstruction. Diagnostics 11(1), 61 (2021)

    Article  Google Scholar 

  56. Lv, J., Zhu, J., Yang, G.: Which GAN? a comparative study of generative adversarial network (GAN) based fast MRI reconstruction. Philos. Trans. R. Soc. A

    Google Scholar 

  57. Yuan, Z., Jiang, M., Wang, Y., Wei, B., Li, Y., Wang, P., Menpes-Smith, W., Niu, Z., Yang, G.: SARA-GAN: Self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Frontiers Neuroinformatics 14 (2020)

    Google Scholar 

  58. Guo, Y., Wang, C., Zhang, H., Yang, G.: Deep attentive wasserstein generative adversarial networks for mri reconstruction with recurrent context-awareness. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 167–177. Springer (2020)

    Google Scholar 

  59. Schlemper, J., Yang, G., Ferreira, P., Scott, A., McGill, L.-A., Khalique, Z., Gorodezky, M., Roehl, M., Keegan, Pennell, J.D., et al.: Stochastic deep compressive sensing for the reconstruction of diffusion tensor cardiac MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 295–303. Springer (2018)

    Google Scholar 

  60. Seitzer, M., Yang, G., Schlemper, J., Oktay, O., Würfl, T., Christlein, V., Wong, T., Mohiaddin, R., Firmin, D., Keegan, J., et al.: Adversarial and perceptual refinement for compressed sensing mri reconstruction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 232–240. Springer (2018)

    Google Scholar 

  61. Donoho, D.L., et al.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Google Scholar 

  62. Quan, T.M., Nguyen-Duc, T., Jeong, W.K.: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018)

    Google Scholar 

  63. Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L., Pauly, J.M.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019)

    Google Scholar 

  64. Schlemper, J., Caballero, J, Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)

    Google Scholar 

  65. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: Proceedings—International Symposium on Biomedical Imaging, Apr. 2019, pp. 1622–1626. IEEE Computer Society, Apr. 2019

    Google Scholar 

  66. Eo, Jun, Y., Kim, T., Jang, J., Lee, H.-J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Google Scholar 

  67. Yu, S., Dong, H., Yang, G., Slabaugh, G., Dragotti, P.L., Ye, X., Liu, F., Arridge, S., Keegan, J., Firmin, D., et al.: Deep de-aliasing for fast compressive sensing MRI (2017). arXiv:1705.07137

  68. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Nets. Technical report (2014)

    Google Scholar 

  69. Deng, X., Yang, R., Zurich, E., Xu, M., Dragotti, P.L.: Wavelet Domain Style Transfer for an Effective Perception-distortion Tradeoff in Single Image Super-Resolution. Technical report (2019)

    Google Scholar 

  70. Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36(1), 55–72 (2012). https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.23639

  71. Zhang, X., Lian, Q., Yang, Y., Su, Y.: A deep unrolling network inspired by total variation for compressed sensing MRI. Digit. Signal Process.: Rev. J. 107 (2020). Publisher: Elsevier

    Google Scholar 

  72. Diamond, S., Sitzmann, V., Heide, F., Wetzstein, G.: Unrolled Optimization with Deep Priors (2017). Publisher: arxiv.org

  73. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019). Publisher: ieeexplore.ieee.org

    Google Scholar 

  74. Mohana, M.J., Madhulika, M.S., Divya, G.D., Meghana, R.K., Apoorva, S.: Feature extraction using convolution neural networks (CNN) and deep learning. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 2319–2323 (2018)

    Google Scholar 

  75. Zhao, D., Zhao, F., Gan, Y.: Reference-driven compressed sensing MR image reconstruction using deep convolutional neural networks without pre-training. Sensors (Switzerland) 20(1) (2020)

    Google Scholar 

  76. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks (2019). arXiv:1907.11711. Publisher: arxiv.org

  77. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process. Mag. 37(1), 141–151 (2020). Publisher: ieeexplore.ieee.org

    Google Scholar 

  78. Zhang, H.-M., Dong, B.: A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China 8(2), 311–340 (2020)

    Google Scholar 

  79. Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018)

    Google Scholar 

  80. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241. Springer, May 2015

    Google Scholar 

  81. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  82. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  83. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  84. Shaul, R., David, I., Shitrit, O., Raviv, R.: Subsampled brain MRI reconstruction by generative adversarial neural networks. Med. Image Anal. 65, 101747 (2020)

    Google Scholar 

  85. Heusel, M., Ramsauer, M., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2018). arXiv:1706.08500

  86. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  87. Chen, Z., Tong, Y.: Face Super-Resolution Through Wasserstein GANs. Technical report (2017)

    Google Scholar 

  88. Wiatrak, M., Albrecht, S.V., Nystrom, A.: Stabilizing GANs: A Survey Stabilizing Generative Adversarial Networks: A Survey. Technical report (2020)

    Google Scholar 

  89. Arjovsky, S.C., Bottou, L.: Wasserstein GAN. Technical report (2017)

    Google Scholar 

  90. Jiang, M., Yuan, Yang, Z.X., Zhang, J., Gong, Y., Xia, L., Li, T.: Accelerating CS-MRI reconstruction with fine-tuning wasserstein generative adversarial network. IEEE Access 7, 152347–152357 (2019). Publisher: ieeexplore.ieee.org

    Google Scholar 

  91. Oh, G., Sim, B., Chung, H.J., Sunwoo, L., Ye, J.C.: Unpaired deep learning for accelerated MRI using optimal transport driven CycleGAN. IEEE Trans. Comput. Imaging 6, 1285–1296 (2020). Publisher: ieeexplore.ieee.org

    Google Scholar 

  92. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved Training of Wasserstein GANs Montreal Institute for Learning Algorithms. Technical report (2017)

    Google Scholar 

  93. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral Normalization for Generative Adversarial Networks (2018). [cs, stat], Feb. 2018. arXiv: 1802.05957

  94. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2017). Conference Name: IEEE Transactions on Computational Imaging

    Google Scholar 

  95. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. In: Proceedings of the National Academy of Sciences, vol. 117(48), pp. 30088–30095, Dec. 2020. Publisher: National Academy of Sciences Section: Colloquium on the Science of Deep Learning (2020)

    Google Scholar 

  96. Hao, J., Wang, C., Zhang, H., Yang, G.: Annealing genetic GAN for minority oversampling (2020). arXiv:2008.01967

  97. Zhu, J., Yang, G., Lio, P.: How can we make GAN perform better in single medical image super-resolution? A lesion focused multi-scale approach. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1669–1673. IEEE (2019)

    Google Scholar 

  98. Zhu, J., Yang, G., Lio, P.: Lesion focused super-resolution. In: Medical Imaging 2019: Image Processing, vol. 10949, p. 109491L. International Society for Optics and Photonics (2019)

    Google Scholar 

  99. Ye, Q., Xia, J., Yang, G.: Explainable AI for covid-19 CT classifiers: an initial comparison study (2021). arXiv:2104.14506

  100. Yang, G., Ye, Q., Xia, J.: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond (2021). arXiv:2102.01998

Download references

Acknowledgements

This study was supported in part by the British Heart Foundation [Project Number: TG/18/5/34111, PG/16/78/32402], the European Research Council Innovative Medicines Initiative [DRAGON, H2020-JTI-IMI2 101005122], the AI for Health Imaging Award [CHAIMELEON, H2020-SC1-FA-DTS-2019-1 952172], and the UK Research and Innovation Future Leaders Fellowship [MR/V023799/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, G., Lv, J., Chen, Y., Huang, J., Zhu, J. (2022). Generative Adversarial Network Powered Fast Magnetic Resonance Imaging—Comparative Study and New Perspectives. In: Razavi-Far, R., Ruiz-Garcia, A., Palade, V., Schmidhuber, J. (eds) Generative Adversarial Learning: Architectures and Applications. Intelligent Systems Reference Library, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-030-91390-8_13

Download citation

Publish with us

Policies and ethics