Skip to main content

Clustering Analyses of Two-Dimensional Space-Filling Curves

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Included in the following conference series:

  • 954 Accesses

Abstract

A discrete space-filling curve provides a linear traversal or indexing of a multi-dimensional grid space. This paper presents two analytical studies on clustering analyses of the 2-dimensional Hilbert and z-order curve families. The underlying measure is the mean number of cluster over all identically shaped subgrids. We derive the exact formulas for the clustering statistics for the 2-dimensional Hilbert and z-order curve families. The exact results allow us to compare their relative performances with respect to this measure: when the grid-order is sufficiently larger than the subgrid-order (typical scenario for most applications), Hilbert curve family performs significantly better than z-order curve family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, J., Niedermeier, R.: On multi-dimensional curves with Hilbert property. Theory Comput. Syst. 33(4), 295–312 (2000). https://doi.org/10.1007/s002240010003

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-filling curves and their use in the design of geometric data structures. Theoret. Comput. Sci. 181(1), 3–15 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bader, M.: Space-Filling Curves - An Introduction with Applications in Scientific Computing. Texts in Computational Science and Engineering, vol. 9. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31046-1

    Book  MATH  Google Scholar 

  4. Ban, X., Goswami, M., Zeng, W., Gu, X., Gao, J.: Topology dependent space filling curves for sensor networks and applications. In: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, 14–19 April 2013, pp. 2166–2174. IEEE (2013)

    Google Scholar 

  5. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces – index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)

    Article  Google Scholar 

  6. Chen, H.-L., Chang, Y.-I.: Neighbor-finding based on space-filling curves. Inf. Syst. 30(3), 205–226 (2005)

    Article  Google Scholar 

  7. Dai, H.K., Su, H.C.: Approximation and analytical studies of inter-clustering performances of space-filling curves. In: Proceedings of the International Conference on Discrete Random Walks (Discrete Mathematics and Theoretical Computer Science, Volume AC (2003)), pp. 53–68, September 2003

    Google Scholar 

  8. Dai, H.K., Su, H.C.: On the locality properties of space-filling curves. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 385–394. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_40

    Chapter  Google Scholar 

  9. Dai, H.K., Su, H.C.: Norm-based locality measures of two-dimensional Hilbert curves. In: Dondi, R., Fertin, G., Mauri, G. (eds.) AAIM 2016. LNCS, vol. 9778, pp. 14–25. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41168-2_2

    Chapter  Google Scholar 

  10. Dai, H.K., Su, H.C.: On norm-based locality measures of 2-dimensional discrete Hilbert curves. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.) FDSE 2020. LNCS, vol. 12466, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63924-2_10

    Chapter  Google Scholar 

  11. Dai, H.K., Whang, K.-Y., Su, H.C.: Locality of corner transformation for multidimensional spatial access methods. Electron. Notes Theor. Comput. Sci. 212, 133–148 (2008). Proceedings of the 2008 International Conference on Foundations of Informatics, Computing and Software

    Article  Google Scholar 

  12. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)

    Article  Google Scholar 

  13. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Trans. Image Process. 5(5), 794–797 (1996)

    Article  Google Scholar 

  14. He, Z., Owen, A.B.: Extensible grids: uniform sampling on a space filling curve. J. Roy. Stat. Soc. Ser. B 78(4), 917–931 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jagadish, H.V.: Analysis of the Hilbert curve for representing two-dimensional space. Inf. Process. Lett. 62(1), 17–22 (1997)

    Article  MathSciNet  Google Scholar 

  16. Kaddoura, M., Ou, C.-W., Ranka, S.: Partitioning unstructured computational graphs for non-uniform and adaptive environments. IEEE Parallel Distrib. Technol. 3(3), 63–69 (1995)

    Article  Google Scholar 

  17. Kinney, N., Hickman, M., Anandakrishnan, R., Garner, H.R.: Crossing complexity of space-filling curves reveals entanglement of S-phase DNA. Public Libr. Sci. One 15(8), e0238322 (2020)

    Google Scholar 

  18. Lawder, J.K.: The application of space-filling curves to the storage and retrieval of multi-dimensional data. Ph.D. thesis, Birkbeck College, University of London, December 1999

    Google Scholar 

  19. Lee, M.-J., Whang, K.-Y., Han, W.-S., Song, I.-Y.: Adaptive row major order: a new space filling curve for efficient spatial join processing in the transform space. J. Syst. Softw. 78(3), 257–269 (2005)

    Article  Google Scholar 

  20. Lempel, A., Ziv, J.: Compression of two-dimensional images. In: Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 12, pp. 141–156. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-82456-2_10

    Chapter  Google Scholar 

  21. Mitchison, G., Durbin, R.: Optimal numberings of an \({N} \times {N}\) array. SIAM J. Algebraic Discrete Methods 7(4), 571–582 (1986)

    Article  MathSciNet  Google Scholar 

  22. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001)

    Article  Google Scholar 

  23. Pérez, A., Kamata, S., Kawaguchi, E.: Peano scanning of arbitrary size images. In: Proceedings of the International Conference on Pattern Recognition, pp. 565–568. IEEE Computer Society (1992)

    Google Scholar 

  24. Platzman, L.K., Bartholdi, J.J., III.: Spacefilling curves and the planar travelling salesman problem. J. ACM 36(4), 719–737 (1989)

    Article  MathSciNet  Google Scholar 

  25. Sagan, H.: Space-Filling Curves. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0871-6

    Book  MATH  Google Scholar 

  26. Song, J.-W., Whang, K.-Y., Lee, Y.-K., Lee, M.-J., Han, W.-S., Park, B.-K.: The clustering property of corner transformation for spatial database applications. Inf. Soft. Technol. 44(7), 419–429 (2002)

    Article  Google Scholar 

  27. Song, J.-W., Whang, K.-Y., Lee, Y.-K., Lee, M.-J., Kim, S.-W.: Spatial join processing using corner transformation. IEEE Trans. Knowl. Data Eng. 11(4), 688–695 (1999)

    Article  Google Scholar 

  28. Wang, C., Jiang, H., Dong, Y.: Connectivity-based space filling curve construction algorithms in high genus 3D surface WSNs. ACM Trans. Sens. Netw. 12(3), 22:1-22:29 (2016)

    Google Scholar 

  29. Xu, P., Tirthapura, S.: On the optimality of clustering through a space filling curve. In: PODS 2012 Proceedings of the 31st Symposium on Principles of Database Systems, pp. 215–224, May 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H.K., Su, H.C. (2021). Clustering Analyses of Two-Dimensional Space-Filling Curves. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics