Skip to main content

Bioactive Phytochemicals from Coconut (Cocos nucifera) Oil Processing By-products

  • Reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

This chapter aims to evaluate the phytochemical compounds of the plant Cocos nucifera (L.) (coconut) and its by-products. Phytochemicals could be used as therapeutic agents and be produced via secondary metabolism in relatively small amounts. Many scientific studies show that carotenoids, phytoestrogens, nondigestible carbohydrates, flavonoids, and prebiotics significantly affect health. They reduce cancer risk due to phenolic antioxidants, anti-inflammatory effects, and dietary fibers. Due to the high utility and value of all the parts of the coconut plant and coconut plant coproducts, it has been used in many countries and cultures. Various applications have been performed on the nuts’ trunk, leaf, sheath, and outer shell, so there is probably no other crop of plant that can be compared to the coconut tree in terms of its versatile end uses. Furthermore, because of increasing demands for environmentally friendly and biodegradable agricultural products, coconut by-products such as coir and others are considered potential resources for current food and nonfood applications. This chapter summarizes the nutritional value, potential health benefits, and chemical composition of the various Cocos nucifera (L.) oil-processing by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Valášek P, D’Amato R, Müller M, Ruggiero A (2018) Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos Part B 146:88–97

    Article  Google Scholar 

  2. Lomelí-Ramírez MG, Anda RR, Satyanarayana KG, Bolzon de Muniz GI, Iwakiri S (2018) Comparative study of the characteristics of green and brown coconut fibers for the development of green composites. Bioresources 13(1):1637–1660

    Article  Google Scholar 

  3. Prabhu SR, Thomas GV (2002) Biological conversion of coir poth into a high value added resource and its application in agri-horticulture: current status, prospects, and perspective. J Plant Crops 30(1):1–47

    Google Scholar 

  4. Stamps RH, Evans MR (1997) Growth of Dieffenbachia maculate “Camille” in growing media containing Sphagnum peat or coconut coir dust. Hortic Sci 32(5):844–847

    Google Scholar 

  5. Fornes F, Belda RM, Fernández de Córdova P, Cebolla-Cornejo J (2017) Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. J Sci Food Agric 97(11):3675–3684

    Article  CAS  PubMed  Google Scholar 

  6. Matos FJA (1997) Introduc¸ão à fitoquı’mica experimental, 2nd edn. Imprensa Universitária, Fortaleza

    Google Scholar 

  7. Costa CT, Bevilaqua CM, Morais SM, Camurca-Vasconcelos AL, Maciel MV, Braga RR (2010) Anthelmintic activity of Cocos nucifera L. on intestinal nematodes of mice. Res Vet Sci 88:101–103. https://doi.org/10.1016/j.rvsc.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  8. Chao J, Lee MS, Amagaya S, Liao JW, Wu JB, Ho LK et al (2009) Hepatoprotective effect of shidagonglao on acute liver injury induced by carbon tetrachloride. Am J Chin Med 37:1085–1097

    Article  PubMed  Google Scholar 

  9. Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261. https://doi.org/10.1016/j.pt.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Mendonca-Filho RR, Rodrigues IA, Alviano DS, Santos AL, Soares RM, Alviano CS et al (2004) Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae). Res Microbiol 155:136–143. https://doi.org/10.1016/j.resmic.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Freitas JCC, Nunes-Pinheiro DCS, Pessoa AWP, Silva LCR, Girão VCC, Lopes-Neto BE et al (2011) Effect of ethyl acetate extract from husk fiber water of Cocos nucifera in Leishmania braziliensis infected hamsters. Rev Bras Farmacogn 21:1006–1011. https://doi.org/10.1590/S0102-695X2011005000138

    Article  CAS  Google Scholar 

  12. Lima EBC, Sousa CNS, Meneses LN, Ximenes NC, Santos Júnior MA, Vasconcelos GS, Lima NBC, Patrocínio MCA, Macedo D, Vasconcelos SMM (2015) Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. BJMBR 48(11):953–964

    Article  CAS  Google Scholar 

  13. Rinaldi S, Silva DO, Bello F, Alviano CS, Alviano DS, Matheus ME et al (2009) Characterization of the antinociceptive and anti-inflammatory activities from Cocos nucifera L. (Palmae). J Ethnopharmacol 122:541–546. https://doi.org/10.1016/j.jep.2009.01.024

    Article  PubMed  Google Scholar 

  14. Silva RR, Oliveira e Silva D, Fontes HR, Alviano CS, Fernandes PD, Alviano DS (2013) Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica. BMC Complement Altern Med 13:107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mydin MAO, Zamzani NM, Abdul Ghani AN (2020) Influence of elevated temperatures on compressive and flexural strengths of Cocos nucifera Linn. fiber strengthened lightweight foamcrete. Rev la Constr 19:112–126

    Google Scholar 

  16. Maia Cardoso, C. K., Mattedi, S., Lobato, A. K. de C. L., Andrade Moreira, Í. T., Remediation of petroleum contaminated saline water using value-added adsorbents derived from waste coconut fibres. Chemosphere 2021, 279, https://doi.org/10.1016/j.chemosphere.2021.130562

  17. Luis-Zarate VH, Rodriguez-Hernandez MC, Alatriste-Mondragon F, Chazaro-Ruiz LF, Rangel-Mendez JR (2018) Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted. J Environ Manag 211:103–111

    Article  CAS  Google Scholar 

  18. Yang L, Wang Z, Yang L, Li X, Zhang Y, Lu C (2017) Coco peat powder as a source of magnetic sorbent for selective oil–water separation. Ind Crop Prod 101:1–10

    Article  CAS  Google Scholar 

  19. Faria DL, Júnior LM, de Almeida Mesquita RG, Júnior MG, Pires NJ, Mendes LM, Junior JBG (2020) Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Res 27(9):249

    Article  CAS  Google Scholar 

  20. Israel AU, Obot IB, Umoren SA, Mkpenie V, Asuquo JE (2008) Production of cellulosic polymers from agricultural wastes. E-Journal Chem 5:81–85

    Article  Google Scholar 

  21. Magda RR (1992) Coco soft drink: health beverage from coconut water. Food Market Technol 6(22–23):17

    Google Scholar 

  22. Solangih A, Iqbal ZA (2011) Chemical composition of meat (kernel) and nut water of major coconut (Cocos nucifera L.) cultivars at coastal area of Pakistan. Pak Am J Bot 43:357–363

    Google Scholar 

  23. Tangwatcharin P, Khopaibool P (2012) Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian J Trop Med Public Health 43:969–985

    PubMed  Google Scholar 

  24. Arlee R, Suanphairoch S, Pakdeechanuan P (2013) Differences in chemical components and antioxidant-related substances in virgin coconut oil from coconut hybrids and their parents. Int Food Res J 20:2103–2109

    Google Scholar 

  25. Pal D, Sarkar A, Gain S, Jana S, Mandal S (2011) CNS depressant activities of roots of Coccos nucifera in mice. Acta Pol Pharm 68:249–254

    PubMed  Google Scholar 

  26. Erosa FE, Gamboa-León MR, Lecher JG, Arroyo-Serralta GA, Zizumbo-Villareal D, Oropeza-Salín C et al (2002) Major components from the epicuticular wax of Cocos nucifera. Rev Soci Quı’mica México 46:247–250

    CAS  Google Scholar 

  27. Sani I, Owoade C, Abdulhamid A, Isah Fakai M, Bello F (2014) Evaluation of physicochemical properties, phytochemicals and mineral composition of Cocos nucifera L. (coconut) kernel oil. IJARCS 8:22–30

    Google Scholar 

  28. Njoku OU, Boniface JAE, Obitte NC, Odimegwu DC, Ogbu HI (2010) Some nutriceutical potential of beniseed oil. Int J Appl Res Nat Prod 2(4):11–19

    CAS  Google Scholar 

  29. Ramesh R, Narayanan A, Satya K, Shankar N (2005) Influence of sesame oil on blood glucose, lipid peroxidation and antioxidant status in streptozotocin diabetic rats. J Med Food 9:487–490

    Google Scholar 

  30. Lyon CK (1972) Sesame: current knowledge of composition and use. J Amer Oil Chem Soc 49:245–249

    Article  CAS  Google Scholar 

  31. Vaughn AR, Clark AK, Sivamani RK, Shi VY (2018) Natural oils for skin-barrier repair: ancient compounds now backed by modern science. Am J Clin Dermatol 19:103–117

    Article  PubMed  Google Scholar 

  32. DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: are- caceae): in health promotion and disease prevention. Asian Pac. J Trop Med 4(3):241–247

    Google Scholar 

  33. Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56(7):650–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Preuss HG, Echard B, Enig M, Brook I, Elliott TB (2005) Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol Cell Biochem 272(1–2):29–34

    Article  CAS  PubMed  Google Scholar 

  35. Carpo BG, Verallo-Rowell VM, Kabara J (2007) Novel antibacterial activity of monolaurin compared with conventional antibiotics against organisms from skin infections: an in vitro study. J Drugs Dermatol 6(10):991–998

    PubMed  Google Scholar 

  36. Evangelista MT, Abad-Casintahan F, Lopez-Villafuerte L (2014) The effect of topical virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial. Int J Dermatol 53(1):100–108

    Article  PubMed  Google Scholar 

  37. Agero AL, Verallo-Rowell VM (2004) A randomized double-blind controlled trial comparing extra virgin coconut oil with mineral oil as a moisturizer for mild to moderate xerosis. Dermatitis 15(3):109–116

    Article  PubMed  Google Scholar 

  38. Cubides-Roman DC, Pérez VH, de Castro HF, Orrego CE, Giraldo OH, Silveira EG, David GF (2017) Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel 196:481–487

    Article  CAS  Google Scholar 

  39. Soumanou MM, Bornscheuer UT (2003) Lipase-catalyzed alcoholysis of vegetable oils. Eur J Lipid Sci Technol 105:656–660

    Article  CAS  Google Scholar 

  40. Ribeiro LMO, Santos BCS, Almeida RMRG (2012) Studies on reaction parameters influence on ethanolic production of coconut oil biodiesel using immobilized lipase as a catalyst. Biomass Bioenergy 47:498–503

    Article  CAS  Google Scholar 

  41. Chukwu AJP, Agbagwa IO, Okoli BE (2012) Screening and evaluation of biocatalysts from plant sources for trans-esterification stage of biodiesel production. Biotechnology 11(4):243–247

    Article  CAS  Google Scholar 

  42. Setiadji S, Sundari CDD, Munir M, Fitriyah S (2018) Synthesis of solid catalyst from egg shell waste and clay for biodiesel production. J Phys Conf Ser 1013:012199

    Article  Google Scholar 

  43. Govarthanan M, Seo YS, Lee KJ, Jung IB, Ju HJ, Kim JS, Cho M, Kamala-Kannan S, Oh BT (2016) Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artif Cells Nanomed Biotechnol 44:1878–1882

    Article  CAS  PubMed  Google Scholar 

  44. Pamplona-Roger GD (2011) Guide des aliments et leur pouvoir curatif, Bibliothèque Education et Santé 1, 159–179

    Google Scholar 

  45. Anselme AL, Albarin GG, Jean-Louis KK, Brice GJ, Jean NG (2018) Glycemic index of sugars extracted from immature coconut water: case of coconut palms (Cocos nucifera L.) WAT, myd and PB121+. J Biosci Med 6:99–110. https://doi.org/10.4236/jbm.2018.68008

    Article  CAS  Google Scholar 

  46. Satheesh N, Prasad NBL (2013) Production of fermented coconut water beverages. Asian J Food Agro Ind 6(05):281–289

    Google Scholar 

  47. Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris-White ME, Frautschy A (2005) Prevention of Alzheimer’s disease: omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 26:133–136

    Article  PubMed  Google Scholar 

  48. Akpro LA, Gbogouri GA, Konan BR, Issali AE, Konan KJL, Brou KD, Nemlin GJ (2019) Phytochemical compounds, antioxidant activity and non-enzymatic browning of sugars extracted from the water of immature coconut (Cocos nucifera L.). Scientific African 6:1–9

    Article  Google Scholar 

  49. Amalina Ishak F, Haziq Jamil M, Syukor Abd Razak A, Huwaida Anuar Zamani N, Rashid Ab Hamid M (2019) Development of animal deed from waste to wealth using Napier Grass and Palm Acid Oil (PAO) from Palm Oil Mill Effluent (POME). Mater Today Proc 19:1618–1627

    Article  CAS  Google Scholar 

  50. D’Amato A, Fasoli E, Righetti PG (2012) Harry Belafonte and the secret proteome of coconut milk. J Proteome 75(3):914–920

    Article  Google Scholar 

  51. Trisunaryanti W, Wijaya K, Triyono T, Adriani AR, Larasati S (2021) Green synthesis of hierarchical porous carbon prepared from coconut lumber sawdust as Ni-based catalyst support for hydrotreating Callophyllum inophyllum oil. Results Eng 11:100258

    Article  CAS  Google Scholar 

  52. Suzuki S, Rodriguez EB, Saito K, Shintani H, Iiyama K (1998) Compositional, compositional and structural characteristics of residual biomass from tropical plantations. J Wood Sci 44:40–46

    Article  CAS  Google Scholar 

  53. Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M (2021) Proteomic analysis of oilseed cake: a comparative study of species-specific proteins and peptides extracted from ten seed species. J Sci Food Agric 101(1):297–306

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Celenk, V.U., Gumus, Z.P., Ustun Argon, Z. (2023). Bioactive Phytochemicals from Coconut (Cocos nucifera) Oil Processing By-products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-91381-6_14

Download citation

Publish with us

Policies and ethics