Skip to main content

Compact Distributed Interactive Proofs for the Recognition of Cographs and Distance-Hereditary Graphs

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13046))

  • 604 Accesses

Abstract

We present compact distributed interactive proofs for the recognition of two important graph classes, well-studied in the context of centralized algorithms, namely complement reducible graphs and distance-hereditary graphs. Complement reducible graphs (also called cographs) are defined as the graphs not containing a four-node path \(P_4\) as an induced subgraph. Distance-hereditary graphs are a super-class of cographs, defined as the graphs where the distance (shortest paths) between any pair of vertices is the same on every induced connected subgraph.

First, we show that there exists a distributed interactive proof for the recognition of cographs with two rounds of interaction. More precisely, we give a \(\mathsf {dAM}\) protocol with a proof size of \(\mathcal {O}(\log n)\) bits that recognizes cographs with high probability. Moreover, our protocol can be adapted to verify any Turing-decidable predicate restricted to cographs in \(\mathsf {dAM}\) with certificates of size \(\mathcal {O}(\log n)\).

Second, we give a three-round, \(\mathsf {dMAM}\) interactive protocol for the recognition of distance-hereditary graphs, still with a proof size of \(\mathcal {O}(\log n)\) bits.

Finally, we show that any one-round (denoted \(\mathsf {dM}\)) or two-round, \(\mathsf {dMA}\) protocol for the recognition of cographs or distance-hereditary graphs requires certificates of size \(\varOmega (\log n)\) bits. Moreover, we show that any constant-round \(\mathsf {dAM}\) protocol using shared randomness requires certificates of size \(\varOmega (\log \log n)\).

Partially supported by CONICYT via PIA/ Apoyo a Centros Científicos y Tecnológicos de Excelencia AFB 170001 (P.M. and I.R.), FONDECYT 1170021 (D.R. and I.R.) and FONDECYT 11190482 (P.M.) and PAI + Convocatoria Nacional Subvención a la Incorporación en la Academia Año 2017 + PAI77170068 (P.M.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assadi, S., Kol, G., Oshman, R.: Lower bounds for distributed sketching of maximal matchings and maximal independent sets. In: Emek, Y., Cachin, C. (eds.) PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, 3–7 August 2020, pp. 79–88. ACM (2020)

    Google Scholar 

  2. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: Symposium on Principles of Distributed Computing, pp. 315–324 (2015)

    Google Scholar 

  3. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of graph decompositions and applications to minor-free classes. arXiv preprint arXiv:2108.00059 (2021)

  4. Brandstadt, A., Spinrad, J.P., et al.: Graph Classes: A Survey, vol. 3. SIAM (1999)

    Google Scholar 

  5. Broersma, H., Dahlhaus, E., Kloks, T.: A linear time algorithm for minimum fill-in and treewidth for distance hereditary graphs. Discret. Appl. Math. 99(1–3), 367–400 (2000)

    Article  MathSciNet  Google Scholar 

  6. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. Theoret. Comput. Sci. 811, 112–124 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cicerone, S., Di Stefano, G., Flammini, M.: Compact-port routing models and applications to distance-hereditary graphs. J. Parallel Distrib. Comput. 61(10), 1472–1488 (2001)

    Article  Google Scholar 

  8. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Discret. Appl. Math. 3(3), 163–174 (1981)

    Article  MathSciNet  Google Scholar 

  9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  MATH  Google Scholar 

  10. Crescenzi, P., Fraigniaud, P., Paz, A.: Trade-offs in distributed interactive proofs. In: 33rd International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  11. Dahlhaus, E.: Efficient parallel recognition algorithms of cographs and distance hereditary graphs. Discret. Appl. Math. 57(1), 29–44 (1995)

    Article  MathSciNet  Google Scholar 

  12. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1–2), 99–111 (2001)

    Article  MathSciNet  Google Scholar 

  13. D’Atri, A., Moscarini, M.: Distance-hereditary graphs, Steiner trees, and connected domination. SIAM J. Comput. 17(3), 521–538 (1988)

    Article  MathSciNet  Google Scholar 

  14. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.: Local certification of graphs with bounded genus. arXiv preprint arXiv:2007.08084 (2020)

  15. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca, I.: Compact distributed certification of planar graphs. Algorithmica 83, 1–30 (2021). https://doi.org/10.1007/s00453-021-00823-w

    Article  MathSciNet  MATH  Google Scholar 

  16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM (JACM) 60(5), 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I.: On distributed Merlin-Arthur decision protocols. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 230–245. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_16

    Chapter  Google Scholar 

  18. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes. Distrib. Comput. 32(3), 217–234 (2019). https://doi.org/10.1007/s00446-018-0340-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks I: planar embedding. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pp. 29–38 (2016)

    Google Scholar 

  20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, vol 57). North-Holland Publishing Co., NLD (2004)

    Google Scholar 

  21. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory Comput. 12(1), 1–33 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-78240-4

    Book  MATH  Google Scholar 

  23. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_31

    Chapter  MATH  Google Scholar 

  24. He, X.: Parallel algorithm for cograph recognition with applications. J. Algorithms 15(2), 284–313 (1993)

    Article  MathSciNet  Google Scholar 

  25. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. 28(4), 417–420 (1977)

    Article  MathSciNet  Google Scholar 

  26. Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T., Chen, G.H.: Efficient parallel algorithms on distance hereditary graphs. Parallel Process. Lett. 09(01), 43–52 (1999)

    Article  MathSciNet  Google Scholar 

  27. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs. Theoret. Comput. Sci. 341(1–3), 411–440 (2005)

    Article  MathSciNet  Google Scholar 

  28. Jung, H.: On a class of posets and the corresponding comparability graphs. J. Comb. Theory Ser. B 24(2), 125–133 (1978)

    Article  MathSciNet  Google Scholar 

  29. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the Induced Subgraph problem in the randomized multiparty simultaneous messages model. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 370–384. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_26

    Chapter  Google Scholar 

  30. Kirkpatrick, D.G., Przytycka, T.: Parallel recognition of complement reducible graphs and cotree construction. Discret. Appl. Math. 29(1), 79–96 (1990)

    Article  MathSciNet  Google Scholar 

  31. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: ACM Symposium on Principles of Distributed Computing, pp. 255–264. ACM (2018)

    Google Scholar 

  32. Konrad, C., Zamaraev, V.: Brief announcement: distributed minimum vertex coloring and maximum independent set in chordal graphs. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pp. 159–161 (2018)

    Google Scholar 

  33. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010). https://doi.org/10.1007/s00446-010-0095-3

    Article  MATH  Google Scholar 

  34. Lin, R., Olariu, S.: Fast parallel algorithms for cographs. In: Nori, K.V., Veni Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 176–189. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53487-3_43

    Chapter  Google Scholar 

  35. Montealegre, P., Perez-Salazar, S., Rapaport, I., Todinca, I.: Graph reconstruction in the congested clique. J. Comput. Syst. Sci. 113, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  36. Montealegre, P., Ramírez-Romero, D., Rapaport, I.: Shared vs private randomness in distributed interactive proofs. LIPIcs, vol. 181, pp. 51:1–51:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  37. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–115. SIAM (2020)

    Google Scholar 

  38. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  Google Scholar 

  39. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory Ser. B 16(2), 191–193 (1974)

    Article  MathSciNet  Google Scholar 

  40. Sumner, D.P.: Dacey graphs. J. Aust. Math. Soc. 18(4), 492–502 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Montealegre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montealegre, P., Ramírez-Romero, D., Rapaport, I. (2021). Compact Distributed Interactive Proofs for the Recognition of Cographs and Distance-Hereditary Graphs. In: Johnen, C., Schiller, E.M., Schmid, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2021. Lecture Notes in Computer Science(), vol 13046. Springer, Cham. https://doi.org/10.1007/978-3-030-91081-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91081-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91080-8

  • Online ISBN: 978-3-030-91081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics