Skip to main content

Traumatic Haemorrhage

  • Chapter
  • First Online:
Emergency Radiology of the Head and Spine

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 755 Accesses

Abstract

Computed tomography (CT) is the key tool to diagnose intracranial haemorrhage following craniocerebral trauma. MRI provides additional information in cases when this seems appropriate such as a more detailed clarification of traumatic neurological disabilities, differentiation between oedema and ischaemia or imaging of shear damage to the neuronal fibre pathways.

Most common is subarachnoid haemorrhage (SAH), followed by subdural (SDH) and epidural haemorrhage (EDH). Besides trauma, SAH may also emerge spontaneously due to rupture of an aneurysm, most likely at the Willis circle. In contrast to spontaneous subarachnoidal bleeding, traumatic SAH does not normally occur at the Sylvian fissure or the basal cisterns, but rather at the cortical, surface sulci and in the interhemispheric gap. As a consequence, the distribution pattern may cause clarification by CT angiography. Subdural haematomas are common concomitant injuries of craniocerebral trauma, especially within elderly patients. They impress computer tomographically as falciform hyperdense bleeding, which can spread along the interhemispheric gap or the falx cerebri and are, therefore, able to cross the adhesion points of the dura and calotte, in contrast to epidural haematomas. Because of their mostly venous origin, neurologic symptoms are commonly subacute. Despite the very early stage of SDH up to 1 h, SDH loses density with time but may show several bleeding events, making it variable in density, especially in CT follow-ups. Epidural haematomas are rather rare, but often dramatic consequences of craniocerebral trauma are associated with skull fractures in up to 90% of cases. They emerge especially temporally at the coup site and are mostly of arterial origin with subsequent secondary complications, such as mass effects. In acute diagnostics, the CT shows a biconvex and hyperdense bleeding, which does not cross the sutures. EDHs with surgical decompression in time have a good outcome, which is why quick and correct diagnosis is of extraordinary importance. A clinically symptom-free interval between the time of injury and the start of mass effects can aggravate diagnosis.

Contusions are one of the most common complications of SHT and occur when the gyri collide with the cranial calotte or dura mater. They manifest themselves as multiple hyperdense lesions with perifocal oedema, preferably at the frontobase and in the temporal lobe, and are often associated with other intracranial haemorrhages, especially SAB. Their peculiarity is that they tend to haemorrhagic progression in up to 50% of cases. Contrast extravasation can predict this. According to this background, control CTs play an important role and can be prognostically decisive. An intravenous administration of KM should be weighed up accordingly in follow-up examinations.

Diffuse axonal damage occurs primarily on the basis of high-speed trauma with associated rapid head rotation. The axonal integrity is destroyed. Since a haemorrhagic component is often absent or can be extremely discreet, the detection with CT is often not possible, and instead, MRI is the imaging method of choice. DAI lesions are most frequently found in descending order at the medullary cortex border, the corpus callosum and in the brainstem. DAI is associated with a very unfavourable prognosis, especially in severe SHT, and is a frequent cause of persistent disabilities up to maximum forms such as apallic syndrome.

At present, however, there is still no clear evidence of an increase in risk of patients under anticoagulation after mild craniocerebral trauma, especially for the endpoint of compulsory therapy, if the data situation is unsatisfactory. For a final evaluation, a significantly more mature study situation on patients under anticoagulation with mild SHT is required. This should only be possible with very large numbers of patients in a multicentre approach.

In order to be able to cope with the presumably increasing incidence of SHT with increasing age in the future, a continuous reduction in the radiation exposure of the CT and a better availability of the MRT will be necessary. Further positive effects may arise from the establishment of dual-energy CT in SHT diagnostics. It is possible that the virtual native representation will help in the assessment of the course after KM administration. In addition, it may even be possible to identify active bleeding components in haematomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Arteria

ASS:

Acetylsalicylic acid

CCT:

Cranial computed tomography

CCTHR:

Canadian CT head rule

CHIP:

CT in Head Injury Patients Prediction Rule

CI:

Confidence interval

CT:

Computed tomography

DAI:

Diffuse axonal injury

EDH:

Epidural haematoma

EFNS:

European Federation of Neurological Societies Guideline

GCS:

Glasgow Coma Scale

ICB:

Intracranial bleeding

INR:

International normalized ratio

ISS:

Injury Severity Score

LDGN:

Guideline of the German Society of Neurosurgery

LOC:

Loss of consciousness

MRT:

Magnetic resonance scanner

NEXUS II:

National Emergency X-Ray Utilization Study II

NI:

Neurosurgical intervention

NICE:

National Institute for Health and Care Excellence (Guidelines)

NMH:

Low molecular weight heparin

NOAK:

New oral anticoagulants

NOC:

New Orleans criteria

OR:

Odds ratio

SAH:

Subarachnoid haemorrhage

SDH:

Subdural haemorrhage

SHT:

Craniocerebral trauma

PACS:

Picture archiving and communicating system

UFH:

Unfractionated heparin

References

  • Abu Hamdeh S et al (2017) Extended anatomical grading in diffuse axonal injury using MRI: hemorrhagic lesions in the substantia nigra and mesencephalic tegmentum indicate poor long-term outcome. J Neurotrauma 34(2):341–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams H et al (1977) Diffuse brain damage of immediate impact type. Its relationship to ‘primary brain-stem damage’ in head injury. Brain 100(3):489–502

    Article  CAS  PubMed  Google Scholar 

  • Adams JH et al (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N et al (2015) Risk associated with traumatic intracranial bleed and outcome in patients following a fall from a standing position. Eur J Trauma Emerg Surg 41(3):307–311

    Article  CAS  PubMed  Google Scholar 

  • Ajani UA et al (2006) Aspirin use among U.S. adults: behavioral risk factor surveillance system. Am J Prev Med 30(1):74–77

    Article  PubMed  Google Scholar 

  • Alahmadi H, Vachhrajani S, Cusimano MD (2010) The natural history of brain contusion: an analysis of radiological and clinical progression. J Neurosurg 112(5):1139–1145

    Article  PubMed  Google Scholar 

  • Allison RZ et al (2017) Derivation of a predictive score for hemorrhagic progression of cerebral contusions in moderate and severe traumatic brain injury. Neurocrit Care 26(1):80–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Andriessen TM, Jacobs B, Vos PE (2010) Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 14(10):2381–2392. https://doi.org/10.1111/j.1582-4934.2010.01164.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae DH et al (2014) Cerebral infarction after traumatic brain injury: incidence and risk factors. Korean J Neurotrauma 10(2):35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Balinger KJ et al (2015a) Selective computed tomographic angiography in traumatic subarachnoid hemorrhage: a pilot study. J Surg Res 199(1):183–189

    Article  PubMed  Google Scholar 

  • Balinger KJ, Elmously A, Hoey BA, Stehly CD, Stawicki SP, Portner ME (2015b) Selective computed tomographic angiography in traumatic subarachnoid hemorrhage: a pilot study. J Surg Res 199:183–189. https://doi.org/10.1016/j.jss.2015.04.006

    Article  PubMed  Google Scholar 

  • Barbosa RR et al (2012) Evaluation and management of mild traumatic brain injury: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg 73(5 Suppl 4):S307–S314

    Article  PubMed  Google Scholar 

  • Batchelor JS, Grayson A (2013) A meta-analysis to determine the effect of preinjury antiplatelet agents on mortality in patients with blunt head trauma. Br J Neurosurg 27(1):12–18

    Article  PubMed  Google Scholar 

  • Beinema M et al (2008) Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon. Thromb Haemost 100(6):1052–1057

    CAS  PubMed  Google Scholar 

  • Beynon C et al (2015) Rivaroxaban and intracranial haemorrhage after mild traumatic brain injury: a dangerous combination? Clin Neurol Neurosurg 136:73–78

    Article  PubMed  Google Scholar 

  • Bigler ED (2007) Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology 21(5):515–531

    Article  PubMed  Google Scholar 

  • Bigler ED (2016) Systems biology, neuroimaging, neuropsychology, neuroconnectivity and traumatic brain injury. Front Syst Neurosci 10:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonville DJ et al (2011) Impact of preinjury warfarin and antiplatelet agents on outcomes of trauma patients. Surgery 150(4):861–868

    Article  PubMed  Google Scholar 

  • Borczuk P et al (2013a) Patients with traumatic subarachnoid hemorrhage are at low risk for deterioration or neurosurgical intervention. J Trauma Acute Care Surg 74(6):1504–1509

    Article  PubMed  Google Scholar 

  • Borczuk P, Penn J, Peak D, Chang Y (2013b) Patients with traumatic subarachnoid hemorrhage are at low risk for deterioration or neurosurgical intervention. J Trauma Acute Care Surg 74:1504–1509. https://doi.org/10.1097/TA.0b013e31829215cf

    Article  PubMed  Google Scholar 

  • Bor-Seng-Shu E et al (2012) Decompressive craniectomy: a meta-analysis of influences on intracranial pressure and cerebral perfusion pressure in the treatment of traumatic brain injury. J Neurosurg 117(3):589–596

    Article  PubMed  Google Scholar 

  • Brazinova A et al (2021) Epidemiology of traumatic brain injury in Europe: a living systematic review. J Neurotrauma 15(10):1411–144

    Google Scholar 

  • Brewer ES et al (2011) Incidence and predictors of intracranial hemorrhage after minor head trauma in patients taking anticoagulant and antiplatelet medication. J Trauma 70(1):E1–E5

    CAS  PubMed  Google Scholar 

  • Brown CV et al (2004) Does routine serial computed tomography of the head influence management of traumatic brain injury? A prospective evaluation. J Trauma 57(5):939–943

    Article  PubMed  Google Scholar 

  • Bullock MR et al (2006) Surgical management of acute subdural hematomas. Neurosurgery 58(3 Suppl):S16–S24. discussion Si-iv

    PubMed  Google Scholar 

  • Cepeda S et al (2015) Traumatic intracerebral hemorrhage: risk factors associated with progression. J Neurotrauma 32(16):1246–1253

    Article  PubMed  Google Scholar 

  • Chelladurai Y et al (2013) Venous thromboembolism prophylaxis in patients with traumatic brain injury: a systematic review. F1000Res 2:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung SW et al (2012) Locations and clinical significance of non-hemorrhagic brain lesions in diffuse axonal injuries. J Korean Neurosurg Soc 52(4):377–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Claudia C et al (2011) Minor head injury in warfarinized patients: indicators of risk for intracranial hemorrhage. J Trauma 70(4):906–909

    CAS  PubMed  Google Scholar 

  • Cloots RJ et al (2013) Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech Model Mechanobiol 12(1):137–150

    Article  CAS  PubMed  Google Scholar 

  • Connolly SJ et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361(12):1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Crooks DA (1991) Pathogenesis and biomechanics of traumatic intracranial haemorrhages. Virchows Arch A Pathol Anat Histopathol 418(6):479–483

    Article  CAS  PubMed  Google Scholar 

  • Cull JD et al (2015) Outcomes in traumatic brain injury for patients presenting on antiplatelet therapy. Am Surg 81(2):128–132

    Article  PubMed  Google Scholar 

  • Cummings TJ et al (2000a) The relationship of blunt head trauma, subarachnoid hemorrhage, and rupture of pre-existing intracranial saccular aneurysms. Neurol Res 22(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Cummings TJ, Johnson RR, Diaz FG, Michael DB (2000b) The relationship of blunt head trauma, subarachnoid hemorrhage, and rupture of pre-existing intracranial saccular aneurysms. Neurol Res 22:165–170

    Article  CAS  PubMed  Google Scholar 

  • Currie S et al (2016a) Imaging assessment of traumatic brain injury. Postgrad Med J 92(1083):41–50

    Article  PubMed  Google Scholar 

  • Currie S, Saleem N, Straiton JA, Macmullen-Price J, Warren DJ, Craven IJ (2016b) Imaging assessment of traumatic brain injury. Postgrad Med J 92:41–50. https://doi.org/10.1136/postgradmedj-2014-133211

    Article  PubMed  Google Scholar 

  • Davidson BL et al (2014) Bleeding risk of patients with acute venous thromboembolism taking nonsteroidal anti-inflammatory drugs or aspirin. JAMA Intern Med 174(6):947–953

    Article  CAS  PubMed  Google Scholar 

  • Davis DP et al (2007) Head-injured patients who “talk and die”: the San Diego perspective. J Trauma 62(2):277–281

    PubMed  Google Scholar 

  • de Andrade AF et al (2008) Intracranial vascular lesions associated with small epidural hematomas. Neurosurgery 62(2):416–420. https://doi.org/10.1227/01.neu.0000316008.11388.f2. discussion 420–1

    Article  PubMed  Google Scholar 

  • Ding K et al (2008) Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J Neurotrauma 25(12):1433–1440

    Article  PubMed  PubMed Central  Google Scholar 

  • Docimo S Jr, Demin A, Vinces F (2014) Patients with blunt head trauma on anticoagulation and antiplatelet medications: can they be safely discharged after a normal initial cranial computed tomography scan? Am Surg 80(6):610–613

    Article  PubMed  Google Scholar 

  • Dossett LA et al (2011) Prevalence and implications of preinjury warfarin use: an analysis of the National Trauma Databank. Arch Surg 146(5):565–570

    Article  PubMed  Google Scholar 

  • Excellence, N.I.f.H.a.C (2014) Head injury: assessment and early management. National Institute for Health and Care Excellence (NICE), London

    Google Scholar 

  • Ezaki Y et al (2006) Role of diffusion-weighted magnetic resonance imaging in diffuse axonal injury. Acta Radiol 47(7):733–740

    Article  CAS  PubMed  Google Scholar 

  • Fabbri A et al (2010) Predicting intracranial lesions by antiplatelet agents in subjects with mild head injury. J Neurol Neurosurg Psychiatry 81(11):1275–1279

    Article  PubMed  Google Scholar 

  • Fabbri A et al (2013) Antiplatelet therapy and the outcome of subjects with intracranial injury: the Italian SIMEU study. Crit Care 17(2):R53

    Article  PubMed  PubMed Central  Google Scholar 

  • Farsi D et al (2017) Effects of pre-injury anti-platelet agents on short-term outcome of patients with mild traumatic brain injury: a cohort study. Bull Emerg Trauma 5(2):110–115

    PubMed  PubMed Central  Google Scholar 

  • Feeney JM et al (2016) Compared to warfarin, direct oral anticoagulants are associated with lower mortality in patients with blunt traumatic intracranial hemorrhage: a TQIP study. J Trauma Acute Care Surg 81(5):843–848

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL et al (2013) Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurol 12(1):53–64

    Article  PubMed  Google Scholar 

  • Firsching R et al (2015) Leitlinie Schädel-Hirn-Trauma im Erwachsenenalter der Deutschen Gesellschaft für Neurochirurgie. 2015 [cited 08.09.2017; Available from: http://www.awmf.org/uploads/tx_szleitlinien/008-001l_S2e_Schaedelhirntrauma_SHT_Erwachsene_2016-06.pdf

  • Forsting M, Jansen O (2017) Chapter 4 Head trauma. In: Forsting M, Jansen O (eds) MR Neuroimaging. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Franko J et al (2006) Advanced age and preinjury warfarin anticoagulation increase the risk of mortality after head trauma. J Trauma 61(1):107–110

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K et al (2014a) Predictors of rapid spontaneous resolution of acute subdural hematoma. Clin Neurol Neurosurg 118:94–97

    Article  PubMed  Google Scholar 

  • Fujimoto K, Otsuka T, Yoshizato K, Kuratsu J (2014b) Predictors of rapid spontaneous resolution of acute subdural hematoma. Clin Neurol Neurosurg 118:94–97. https://doi.org/10.1016/j.clineuro.2013.11.030

    Article  PubMed  Google Scholar 

  • Gaetani P et al (2012) Traumatic brain injury in the elderly: considerations in a series of 103 patients older than 70. J Neurosurg Sci 56(3):231–237

    CAS  PubMed  Google Scholar 

  • Ganetsky M et al (2017) Risk of intracranial hemorrhage in ground-level fall with antiplatelet or anticoagulant agents. Acad Emerg Med 24(10):1258–1266

    Article  PubMed  Google Scholar 

  • Ganpule S et al (2017) A three-dimensional computational human head model that captures live human brain dynamics. J Neurotrauma 34(13):2154–2166

    Article  PubMed  PubMed Central  Google Scholar 

  • Garber ST, Sivakumar W, Schmidt RH (2012) Neurosurgical complications of direct thrombin inhibitors – catastrophic hemorrhage after mild traumatic brain injury in a patient receiving dabigatran. J Neurosurg 116(5):1093–1096

    Article  PubMed  Google Scholar 

  • Garra G, Nashed AH, Capobianco L (1999) Minor head trauma in anticoagulated patients. Acad Emerg Med 6(2):121–124

    Article  CAS  PubMed  Google Scholar 

  • Gean AD et al (2010a) Benign anterior temporal epidural hematoma: indolent lesion with a characteristic CT imaging appearance after blunt head trauma. Radiology 257(1):212–218

    Article  PubMed  Google Scholar 

  • Gean AD, Fischbein NJ, Purcell DD, Aiken AH, Manley GT, Stiver SI (2010b) Benign anterior temporal epidural hematoma: indolent lesion with a characteristic CT imaging appearance after blunt head trauma. Radiology 257:212–218. https://doi.org/10.1148/radiol.10092075

    Article  PubMed  Google Scholar 

  • Gentry LR, Godersky JC, Thompson B (1988a) MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol 150(3):663–672

    Article  CAS  PubMed  Google Scholar 

  • Gentry LR, Thompson B, Godersky JC (1988b) Trauma to the corpus callosum: MR features. AJNR Am J Neuroradiol 9(6):1129–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoudis PV et al (2009) Severe and multiple trauma in older patients; incidence and mortality. Injury 40(4):362–367

    Article  CAS  PubMed  Google Scholar 

  • Given CA 2nd et al (2003a) Pseudo-subarachnoid hemorrhage: a potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol 24(2):254–256

    PubMed  PubMed Central  Google Scholar 

  • Given CA 2nd, Burdette JH, Elster AD, Williams DW 3rd (2003b) Pseudo-subarachnoid hemorrhage: a potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol 24:254–256

    PubMed  PubMed Central  Google Scholar 

  • Graham DJ et al (2015) Cardiovascular, bleeding, and mortality risks in elderly Medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation 131(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Greenberg SM et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Grelat M, Madkouri R, Bousquet O (2016) Acute isodense subdural hematoma on computed tomography scan - diagnostic and therapeutic trap: a case report. J Med Case Rep 10:43. https://doi.org/10.1186/s13256-016-0822-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C et al (2017a) Swirl sign in traumatic acute epidural hematoma: prognostic value and surgical management. Neurol Sci 38(12):2111–2116

    Article  PubMed  Google Scholar 

  • Guo C, Liu L, Wang B, Wang Z (2017b) Swirl sign in traumatic acute epidural hematoma: prognostic value and surgical management. Neurol Sci 38:2111–2116. https://doi.org/10.1007/s10072-017-3121-4

    Article  PubMed  Google Scholar 

  • Hayashi T et al (2016a) Delayed deterioration in isolated traumatic subarachnoid hemorrhage. World Neurosurg 86:511.e9–511.14

    Article  Google Scholar 

  • Hayashi T, Karibe H, Narisawa A, Kameyama M (2016b) Delayed deterioration in isolated traumatic subarachnoid hemorrhage. World Neurosurg 86(511):e519–e514. https://doi.org/10.1016/j.wneu.2015.09.108

    Article  Google Scholar 

  • Haydel MJ et al (2000) Indications for computed tomography in patients with minor head injury. N Engl J Med 343(2):100–105

    Article  CAS  PubMed  Google Scholar 

  • Heinzelmann M, Platz A, Imhof HG (1996) Outcome after acute extradural haematoma, influence of additional injuries and neurological complications in the ICU. Injury 27(5):345–349. https://doi.org/10.1016/0020-1383(95)00223-5

    Article  CAS  PubMed  Google Scholar 

  • Heit JJ, Iv M, Wintermark M (2017) Imaging of intracranial hemorrhage. J Stroke 19(1):11–27. https://doi.org/10.5853/jos.2016.00563

    Article  PubMed  Google Scholar 

  • Hijaz TA, Cento EA, Walker MT (2011) Imaging of head trauma. Radiol Clin North Am. 49:81–103

    Article  PubMed  Google Scholar 

  • Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 39(5):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsh J, Levine MN (1992) Low molecular weight heparin. Blood 79(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Ho ML, Rojas R, Eisenberg RL (2012) Cerebral edema. AJR Am J Roentgenol 199(3):W258–W273

    Article  PubMed  Google Scholar 

  • Huang AP et al (2011) Early parenchymal contrast extravasation predicts subsequent hemorrhage progression, clinical deterioration, and need for surgery in patients with traumatic cerebral contusion. J Trauma 71(6):1593–1599

    PubMed  Google Scholar 

  • Hudak AM et al (2014) Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Inj 28(12):1602–1609

    Article  PubMed  Google Scholar 

  • Huisman TA, Tschirch FT (2009) Epidural hematoma in children: do cranial sutures act as a barrier? J Neuroradiol 36(2):93–97. https://doi.org/10.1016/j.neurad.2008.06.003

    Article  CAS  PubMed  Google Scholar 

  • Huisman TA et al (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27(1):5–11

    Article  PubMed  Google Scholar 

  • Iaccarino C et al (2014) Patients with brain contusions: predictors of outcome and relationship between radiological and clinical evolution. J Neurosurg 120(4):908–918

    Article  PubMed  Google Scholar 

  • Inamasu J et al (2002a) Rapid resolution of traumatic acute subdural hematoma by redistribution. Am J Emerg Med 20(4):376–377

    Article  PubMed  Google Scholar 

  • Inamasu J, Nakamura Y, Saito R, Kuroshima Y, Mayanagi K, Ohba S, Ichikizaki K (2002b) Rapid resolution of traumatic acute subdural hematoma by redistribution. Am J Emerg Med 20:376–377. https://doi.org/10.1053/ajem.2002.33955

    Article  PubMed  Google Scholar 

  • Inglese M et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103(2):298–303

    Article  PubMed  Google Scholar 

  • Jagoda AS et al (2008) Clinical policy: neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. Ann Emerg Med 52(6):714–748

    Article  PubMed  Google Scholar 

  • Johnson VE et al (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136(Pt 1):28–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Kach K et al (1992a) [Differences of acute and chronic epidural hematoma]. Unfallchirurg 95(9):426–430

    Google Scholar 

  • Kach K, Imhof HG, Kunzi W, Trentz O (1992b) [Differences of acute and chronic epidural hematoma] Unfallchirurg 95:426–430

    Google Scholar 

  • Kaen A et al (2010) The value of sequential computed tomography scanning in anticoagulated patients suffering from minor head injury. J Trauma 68(4):895–898

    CAS  PubMed  Google Scholar 

  • Kalanithi P et al (2011a) Hospital costs, incidence, and inhospital mortality rates of traumatic subdural hematoma in the United States. J Neurosurg 115(5):1013–1018

    Article  PubMed  Google Scholar 

  • Kalanithi P, Schubert RD, Lad SP, Harris OA, Boakye M (2011b) Hospital costs, incidence, and inhospital mortality rates of traumatic subdural hematoma in the United States. J Neurosurg 115:1013–1018. https://doi.org/10.3171/2011.6.JNS101989

    Article  PubMed  Google Scholar 

  • Kamezaki T et al (2004a) Traumatic acute subdural hygroma mimicking acute subdural hematoma. J Clin Neurosci 11(3):311–313

    Article  PubMed  Google Scholar 

  • Kamezaki T, Yanaka K, Fujita K, Nakamura K, Nagatomo Y, Nose T (2004b) Traumatic acute subdural hygroma mimicking acute subdural hematoma. J Clin Neurosci 11:311–313. https://doi.org/10.1016/j.jocn.2003.10.013

    Article  PubMed  Google Scholar 

  • Kapsalaki EZ et al (2007a) Spontaneous resolution of acute cranial subdural hematomas. Clin Neurol Neurosurg 109(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Kapsalaki EZ, Machinis TG, Robinson JS 3rd, Newman B, Grigorian AA, Fountas KN (2007b) Spontaneous resolution of acute cranial subdural hematomas. Clin Neurol Neurosurg 109:287–291. https://doi.org/10.1016/j.clineuro.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  • Karow T, Lang-Roth R (2017) Allgemeine und spezielle Pharmakologie und Toxikologie: Vorlesungsorientierte Darstellung und klinischer Leitfaden für Studium und Praxis, pp 154–186

    Google Scholar 

  • Kazam JJ, Tsiouris AJ (2015) Brain magnetic resonance imaging for traumatic brain injury: why, when, and how? Top Magn Reson Imaging 24(5):225–239. https://doi.org/10.1097/RMR.0000000000000061

    Article  PubMed  Google Scholar 

  • Kim JJ, Gean AD (2011) Imaging for the diagnosis and management of traumatic brain injury. Neurotherapeutics 8(1):39–53. https://doi.org/10.1007/s13311-010-0003-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2008) Contrast extravasation on CT predicts mortality in primary intracerebral hemorrhage. AJNR Am J Neuroradiol 29(3):520–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircelli A et al (2016a) Is the presence of linear fracture a predictor of delayed posterior fossa epidural hematoma? Ulus Travma Acil Cerrahi Derg 22(4):355–360

    PubMed  Google Scholar 

  • Kircelli A, Ozel O, Can H, Sari R, Cansever T, Elmaci I (2016b) Is the presence of linear fracture a predictor of delayed posterior fossa epidural hematoma? Ulusal Travma Acil Cerrahi Derg 22:355–360. https://doi.org/10.5505/tjtes.2015.52563

    Article  Google Scholar 

  • Knudson MM et al (2004) Thromboembolism after trauma: an analysis of 1602 episodes from the American College of Surgeons National Trauma Data Bank. Ann Surg 240(3):490–496. discussion 496–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi L et al (2017) Novel oral anticoagulants and trauma: the results of a prospective American association for the surgery of trauma multi-institutional trial. J Trauma Acute Care Surg 82(5):827–835

    Article  CAS  PubMed  Google Scholar 

  • Kurland D et al (2012) Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 29(1):19–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwiatt ME et al (2012) Is low-molecular-weight heparin safe for venous thromboembolism prophylaxis in patients with traumatic brain injury? A Western Trauma Association multicenter study. J Trauma Acute Care Surg 73(3):625–628

    Article  CAS  PubMed  Google Scholar 

  • Lawrence TP et al (2017) Early detection of cerebral microbleeds following traumatic brain injury using MRI in the hyper-acute phase. Neurosci Lett 655:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS et al (1997a) The computed tomographic attenuation and the age of subdural hematomas. J Korean Med Sci 12(4):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS, Bae WK, Bae HG, Doh JW, Yun IG (1997b) The computed tomographic attenuation and the age of subdural hematomas. J Korean Med Sci 12:353–359. https://doi.org/10.3346/jkms.1997.12.4.353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY et al (2012) Prediction of outcome after traumatic brain injury using clinical and neuroimaging variables. J Clin Neurol 8(3):224–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitgeb J et al (2012a) Outcome after severe brain trauma due to acute subdural hematoma. J Neurosurg 117(2):324–333

    Article  PubMed  Google Scholar 

  • Leitgeb J, Mauritz W, Brazinova A, Janciak I, Majdan M, Wilbacher I, Rusnak M (2012b) Outcome after severe brain trauma due to acute subdural hematoma. J Neurosurg 117:324–333. https://doi.org/10.3171/2012.4.JNS111448

    Article  PubMed  Google Scholar 

  • LeRoux PD et al (1992) Intraventricular hemorrhage in blunt head trauma: an analysis of 43 cases. Neurosurgery 31(4):678–684. discussion 684–5

    CAS  PubMed  Google Scholar 

  • Letourneau-Guillon L et al (2013) Traumatic intracranial hematomas: prognostic value of contrast extravasation. AJNR Am J Neuroradiol 34(4):773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J (2012) Admit all anticoagulated head-injured patients? A million dollars versus your dime. You make the call. Ann Emerg Med 59(6):457–459

    Article  PubMed  Google Scholar 

  • Li S et al (2015) Enoxaparin ameliorates post-traumatic brain injury edema and neurologic recovery, reducing cerebral leukocyte endothelial interactions and vessel permeability in vivo. J Trauma Acute Care Surg 79(1):78–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobato RD et al (1983) Outcome from severe head injury related to the type of intracranial lesion. A computerized tomography study. J Neurosurg 59(5):762–774

    Article  CAS  PubMed  Google Scholar 

  • Lolli V et al (2016) MDCT imaging of traumatic brain injury. Br J Radiol 89(1061):20150849

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas AI et al (2005) Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 57(6):1173–1182. discussion 1173-82

    Article  PubMed  Google Scholar 

  • Major J, Reed MJ (2009) A retrospective review of patients with head injury with coexistent anticoagulant and antiplatelet use admitted from a UK emergency department. Emerg Med J 26(12):871–876

    Article  CAS  PubMed  Google Scholar 

  • Malik NK et al (2007a) Posterior fossa extradural hematoma: our experience and review of the literature. Surg Neurol 68(2):155–158. discussion 158

    Article  PubMed  Google Scholar 

  • Malik NK, Makhdoomi R, Indira B, Shankar S, Sastry K (2007b) Posterior fossa extradural hematoma: our experience and review of the literature. Surg Neurol 68:155–158.; discussion 158. https://doi.org/10.1016/j.surneu.2006.10.051

    Article  PubMed  Google Scholar 

  • Marshall LF et al (1991) A new classification of head injury based on computerized tomography. J Neurosurg 75(1s):S14–S20. Special Supplements

    Article  Google Scholar 

  • Mason S et al (2017) AHEAD Study: an observational study of the management of anticoagulated patients who suffer head injury. BMJ Open 7(1):e014324

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata-Mbemba D et al (2015) Intraventricular hemorrhage on initial computed tomography as marker of diffuse axonal injury after traumatic brain injury. J Neurotrauma 32(5):359–365

    Article  PubMed  Google Scholar 

  • Matsushima K et al (2016) Therapeutic anticoagulation in patients with traumatic brain injury. J Surg Res 205(1):186–191

    Article  PubMed  Google Scholar 

  • Maung AA et al (2016) Trauma patients on new oral anticoagulation agents have lower mortality than those on warfarin. J Trauma Acute Care Surg 81(4):652–657

    Article  CAS  PubMed  Google Scholar 

  • McMillian WD, Rogers FB (2009) Management of prehospital antiplatelet and anticoagulant therapy in traumatic head injury: a review. J Trauma 66(3):942–950

    PubMed  Google Scholar 

  • Menditto VG et al (2012) Management of minor head injury in patients receiving oral anticoagulant therapy: a prospective study of a 24-hour observation protocol. Ann Emerg Med 59(6):451–455

    Article  PubMed  Google Scholar 

  • Meythaler JM et al (2001) Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 82(10):1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Minshall CT et al (2011) Safety and efficacy of heparin or enoxaparin prophylaxis in blunt trauma patients with a head abbreviated injury severity score >2. J Trauma 71(2):396–399. discussion 399–400

    CAS  PubMed  Google Scholar 

  • Modi NJ, Agrawal M, Sinha VD (2016) Post-traumatic subarachnoid hemorrhage: a review. Neurol India 64(Suppl):S8–S13. https://doi.org/10.4103/0028-3886.178030

    Article  PubMed  Google Scholar 

  • Moen KG et al (2012) A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry 83(12):1193–1200

    Article  PubMed  Google Scholar 

  • Moen KG et al (2014) Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences. J Neurotrauma 31(17):1486–1496

    Article  PubMed  Google Scholar 

  • Morales DL, Diaz-Daza O, Hayman LA. Brain Contusion Imaging. 2017 Nov 01, 2015 [cited 21.09.2017; Available from: http://emedicine.medscape.com/article/337782-overview - a1

  • Nagata K et al (2017) Early heparin administration after traumatic brain injury: prolonged cognitive recovery associated with reduced cerebral edema and neutrophil sequestration. J Trauma Acute Care Surg 83(3):406–412

    Article  CAS  PubMed  Google Scholar 

  • Nakstad PH, Gjertsen O, Pedersen HK (2008) Correlation of head trauma and traumatic aneurysms. Interv Neuroradiol 14(1):33–38. https://doi.org/10.1177/159101990801400104

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandigam RN et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30(2):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naraghi L et al (2015) Is CT angiography of the head useful in the management of traumatic brain injury? J Am Coll Surg 220(6):1027–1031. https://doi.org/10.1016/j.jamcollsurg.2015.03.002

    Article  PubMed  Google Scholar 

  • Narayan RK et al (2008) Progression of traumatic intracerebral hemorrhage: a prospective observational study. J Neurotrauma 25(6):629–639

    Article  PubMed  Google Scholar 

  • Narum S et al (2016) Mortality among head trauma patients taking preinjury antithrombotic agents: a retrospective cohort analysis from a Level 1 trauma centre. BMC Emerg Med 16(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishijima DK et al (2012) Immediate and delayed traumatic intracranial hemorrhage in patients with head trauma and preinjury warfarin or clopidogrel use. Ann Emerg Med 59(6):460–468. e1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishijima DK et al (2013) Risk of traumatic intracranial hemorrhage in patients with head injury and preinjury warfarin or clopidogrel use. Acad Emerg Med 20(2):140–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi K et al (2000a) Comparison of fluid-attenuated inversion-recovery MR imaging with CT in a simulated model of acute subarachnoid hemorrhage. AJNR Am J Neuroradiol 21(5):923–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi K, Seto H, Kamisaki Y, Tomizawa G, Toyoshima S, Watanabe N (2000b) Comparison of fluid-attenuated inversion-recovery MR imaging with CT in a simulated model of acute subarachnoid hemorrhage. AJNR Am J Neuroradiol 21:923–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva WS et al (2013a) Bilateral acute epidural hematoma with good outcome. J Clin Diagn Res 7(11):2594–2595

    PubMed  PubMed Central  Google Scholar 

  • Paiva WS, Andrade AF, Alves AC, Ribeiro IN, Teixeira MJ (2013b) Bilateral acute epidural hematoma with good outcome. J Clin Diagn Res 7:2594–2595. https://doi.org/10.7860/JCDR/2013/5709.3609

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva WS et al (2014) Computed tomography angiography for detection of middle meningeal artery lesions associated with acute epidural hematomas. Biomed Res Int 2014:413916. https://doi.org/10.1155/2014/413916

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajic SS et al (2017) Trauma of the frontal region is influenced by the volume of frontal sinuses. A finite element study. Front Physiol 8:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Mahapatra A, Singh PK (2014) Bilateral large traumatic hemorrhage of the basal ganglion. Asian J Neurosurg 9(4):240

    PubMed  PubMed Central  Google Scholar 

  • Pandey S et al (2017) Bilateral traumatic intracranial hematomas and its outcome: a retrospective study. Indian J Surg 79(1):19–23. https://doi.org/10.1007/s12262-015-1416-3

    Article  PubMed  Google Scholar 

  • Park JH et al (2009) Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean Neurosurg Soc 46(4):365–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Parra MW et al (2013) Dabigatran bleed risk with closed head injuries: are we prepared? J Neurosurg 119(3):760–765

    Article  PubMed  Google Scholar 

  • Peterson EC, Chesnut RM (2011) Talk and die revisited: bifrontal contusions and late deterioration. J Trauma 71(6):1588–1592

    PubMed  Google Scholar 

  • Phelan HA et al (2012) A randomized, double-blinded, placebo-controlled pilot trial of anticoagulation in low-risk traumatic brain injury: The Delayed Versus Early Enoxaparin Prophylaxis I (DEEP I) study. J Trauma Acute Care Surg 73(6):1434–1441

    Article  PubMed  CAS  Google Scholar 

  • Phelan HA et al (2014a) Does isolated traumatic subarachnoid hemorrhage merit a lower intensity level of observation than other traumatic brain injury? J Neurotrauma 31(20):1733–1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelan HA, Richter AA, Scott WW, Pruitt JH, Madden CJ, Rickert KL, Wolf SE (2014b) Does isolated traumatic subarachnoid hemorrhage merit a lower intensity level of observation than other traumatic brain injury? J Neurotrauma 31:1733–1736. https://doi.org/10.1089/neu.2014.3377

    Article  PubMed  PubMed Central  Google Scholar 

  • Post A et al (2015a) Traumatic brain injuries: the influence of the direction of impact. Neurosurgery 76(1):81–91

    Article  PubMed  Google Scholar 

  • Post A, Hoshizaki TB, Gilchrist MD, Brien S, Cusimano M, Marshall S (2015b) Traumatic brain injuries: the influence of the direction of impact. Neurosurgery 76:81–91. https://doi.org/10.1227/NEU.0000000000000554

    Article  PubMed  Google Scholar 

  • Provenzale J (2007) CT and MR imaging of acute cranial trauma. Emerg Radiol 14(1):1–12. https://doi.org/10.1007/s10140-007-0587-z

    Article  PubMed  Google Scholar 

  • Quigley MR et al (2013a) The clinical significance of isolated traumatic subarachnoid hemorrhage. J Trauma Acute Care Surg 74(2):581–584

    Article  PubMed  Google Scholar 

  • Quigley MR, Chew BG, Swartz CE, Wilberger JE (2013b) The clinical significance of isolated traumatic subarachnoid hemorrhage. J Trauma Acute Care Surg 74:581–584. https://doi.org/10.1097/TA.0b013e31827d6088

    Article  PubMed  Google Scholar 

  • Ramesh VG et al (2017a) Vertex epidural hematoma: an analysis of a large series. Asian J Neurosurg 12(2):167–171

    PubMed  PubMed Central  Google Scholar 

  • Ramesh VG, Kodeeswaran M, Deiveegan K, Sundar V, Sriram K (2017b) Vertex epidural hematoma: an analysis of a large series. Asian J Neurosurg 12:167–171. https://doi.org/10.4103/1793-5482.145555

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy S et al (2014) Incidence of intracranial hemorrhage and outcomes after ground-level falls in geriatric trauma patients taking preinjury anticoagulants and antiplatelet agents. Am Surg 80(10):975–978

    Article  PubMed  Google Scholar 

  • Rinkel GJ, van Gijn J, Wijdicks EF (1993) Subarachnoid hemorrhage without detectable aneurysm. A review of the causes. Stroke 24(9):1403

    Article  CAS  PubMed  Google Scholar 

  • Romero JM et al (2013a) Contrast extravasation on CT angiography predicts hematoma expansion and mortality in acute traumatic subdural hemorrhage. AJNR Am J Neuroradiol 34(8):1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero JM, Kelly HR, Delgado Almandoz JE, Hernandez-Siman J, Passanese JC, Lev MH, Gonzalez RG (2013b) Contrast extravasation on CT angiography predicts hematoma expansion and mortality in acute traumatic subdural hemorrhage. AJNR Am J Neuroradiol 34:1528–1534. https://doi.org/10.3174/ajnr.A3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozsa L, Grote EH, Egan P (1989) Traumatic brain swelling studied by computerized tomography and densitometry. Neurosurg Rev 12(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Ryan CG et al (2012a) Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a Level I trauma center. J Trauma Acute Care Surg 73(5):1348–1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan CG, Thompson RE, Temkin NR, Crane PK, Ellenbogen RG, Elmore JG (2012b) Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a Level I trauma center. J Trauma Acute Care Surg 73:1348–1354. https://doi.org/10.1097/TA.0b013e31826fcb30

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvatori M, Kodikara S, Pollanen M (2012) Fatal subarachnoid hemorrhage following traumatic rupture of the internal carotid artery. Leg Med (Tokyo) 14(6):328–330. https://doi.org/10.1016/j.legalmed.2012.06.004

    Article  Google Scholar 

  • Samama MM (2011) The mechanism of action of rivaroxaban - an oral, direct Factor Xa inhibitor - compared with other anticoagulants. Thromb Res 127(6):497–504

    Article  CAS  PubMed  Google Scholar 

  • Sarkar K et al (2014a) Computed tomography characteristics in pediatric versus adult traumatic brain injury. J Neurosurg Pediatr 13(3):307–314

    Article  PubMed  Google Scholar 

  • Sarkar K, Keachie K, Nguyen U, Muizelaar JP, Zwienenberg-Lee M, Shahlaie K (2014b) Computed tomography characteristics in pediatric versus adult traumatic brain injury Journal of neurosurgery. Pediatrics 13:307–314. https://doi.org/10.3171/2013.12.PEDS13223

    Article  PubMed  Google Scholar 

  • Sato T et al (2014) Traumatic basal subarachnoid hemorrhage suspected to have been caused by contrecoup cerebellar contusions: a case report. Leg Med (Tokyo) 16(2):92–94

    Article  Google Scholar 

  • Scheid R et al (2007) Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. J Neurotrauma 24(12):1811–1816

    Article  PubMed  Google Scholar 

  • Schmidt L (2018) Doctoral Thesis under review. Eine Übersicht zu nicht-knöchernen Verletzungsfolgen nach Schädel-Hirn-Trauma mit einer retrospektiven Single-Center-Studie zur Abschätzung des Einflusses gerinnungshemmender Vor-Medikation am Beispiel des Klinikums der Universität München. Ludwig-Maximilians-Universität München, Germany

    Google Scholar 

  • Schnabel RB et al (2012) Atrial fibrillation: its prevalence and risk factor profile in the German general population. Dtsch Arztebl Int 109(16):293–299

    PubMed  PubMed Central  Google Scholar 

  • Scott G, Coats B (2015) Microstructural characterization of the pia-arachnoid complex using optical coherence tomography. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2015.2396527

  • Scotti G et al (1977a) Evaluation of the age of subdural hematomas by computerized tomography. J Neurosurg 47(3):311–315

    Article  CAS  PubMed  Google Scholar 

  • Scotti G, Terbrugge K, Melancon D, Belanger G (1977b) Evaluation of the age of subdural hematomas by computerized tomography. J Neurosurg 47:311–315. https://doi.org/10.3171/jns.1977.47.3.0311

    Article  CAS  PubMed  Google Scholar 

  • Scudday T et al (2011) Safety and efficacy of prophylactic anticoagulation in patients with traumatic brain injury. J Am Coll Surg 213(1):148–153. discussion 153–4

    Article  PubMed  Google Scholar 

  • Selariu E et al (2012a) Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol 12:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Selariu E, Zia E, Brizzi M, Abul-Kasim K (2012b) Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol. 12:109. https://doi.org/10.1186/1471-2377-12-109

    Article  PubMed  PubMed Central  Google Scholar 

  • Servadei F, Picetti E (2014) Traumatic subarachnoid hemorrhage. World Neurosurg 82(5):e597–e598. https://doi.org/10.1016/j.wneu.2014.08.034

    Article  PubMed  Google Scholar 

  • Servadei F et al (2002) Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery 50(2):261–267. discussion 267-9

    PubMed  Google Scholar 

  • Server A et al (2001) Post-traumatic cerebral infarction. Neuroimaging findings, etiology and outcome. Acta Radiol 42(3):254–260

    CAS  PubMed  Google Scholar 

  • Sharma DR, Gaillard APF. Subdural haemorrhage. 2018a [cited 2018 02/07/2018]; Available from: https://radiopaedia.org/articles/subdural-haemorrhage

  • Sharma DR, Gaillard APF (2018b) Subdural haemorrhage. Radiopaedia.org. https://radiopaedia.org/articles/subdural-haemorrhage. Accessed 02 July 2018 2018

  • Shimoda K et al (2014) Outcome and surgical management for geriatric traumatic brain injury: analysis of 888 cases registered in the Japan Neurotrauma Data Bank. World Neurosurg 82(6):1300–1306

    Article  PubMed  Google Scholar 

  • Sigurdsson S et al (2012) Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study. NeuroImage 59(4):3862–3870. https://doi.org/10.1016/j.neuroimage.2011.11.024

    Article  PubMed  Google Scholar 

  • Skaga NO et al (2008) Different definitions of patient outcome: consequences for performance analysis in trauma. Injury 39(5):612–622

    Article  PubMed  Google Scholar 

  • Skandsen T et al (2010) Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg 113(3):556–563

    Article  PubMed  Google Scholar 

  • Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30(5):307–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Song SY et al (2016a) Delayed rebleeding of cerebral aneurysm misdiagnosed as traumatic subarachnoid hemorrhage. J Cerebrovasc Endovasc Neurosurg 18(3):253–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Song SY, Kim DW, Park JT, Kang SD (2016b) Delayed rebleeding of cerebral aneurysm misdiagnosed as traumatic subarachnoid hemorrhage. J Cerebrovasc Endovasc Neurosurg 18:253–257. https://doi.org/10.7461/jcen.2016.18.3.253

    Article  PubMed  PubMed Central  Google Scholar 

  • Soon WC, Marcus H, Wilson M (2016) Traumatic acute extradural haematoma - Indications for surgery revisited. Br J Neurosurg 30(2):233–234. https://doi.org/10.3109/02688697.2015.1119237

    Article  PubMed  Google Scholar 

  • Soustiel JF et al (2008) Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 50(2):189–196

    Article  PubMed  Google Scholar 

  • Southworth MR, Reichman ME, Unger EF (2013) Dabigatran and postmarketing reports of bleeding. N Engl J Med 368(14):1272–1274

    Article  CAS  PubMed  Google Scholar 

  • Spektor S et al (2003) Low-dose aspirin prophylaxis and risk of intracranial hemorrhage in patients older than 60 years of age with mild or moderate head injury: a prospective study. J Neurosurg 99(4):661–665

    Article  PubMed  Google Scholar 

  • Steyerberg EW et al (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5(8):e165. https://doi.org/10.1371/journal.pmed.0050165. discussion e165

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiell IG et al (2001) The Canadian CT Head Rule for patients with minor head injury. Lancet 357(9266):1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Struffert T, Axmann C, Reith W (2003) Schädel- und Hirntrauma. Radiologe 43(11):1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Su IC et al (2010) Differential CT features of acute lentiform subdural hematoma and epidural hematoma. Clin Neurol Neurosurg 112(7):552–556. https://doi.org/10.1016/j.clineuro.2010.03.001

    Article  PubMed  Google Scholar 

  • Sullivan S et al (2015) White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol 14(4):877–896

    Article  PubMed  Google Scholar 

  • Sweeney TE et al (2015a) Prediction of neurosurgical intervention after mild traumatic brain injury using the national trauma data bank. World J Emerg Surg 10:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney TE, Salles A, Harris OA, Spain DA, Staudenmayer KL (2015b) Prediction of neurosurgical intervention after mild traumatic brain injury using the national trauma data bank. World J Emerg Surg 10:23. https://doi.org/10.1186/s13017-015-0017-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbott JF et al (2014a) Calvarial fracture patterns on CT imaging predict risk of a delayed epidural hematoma following decompressive craniectomy for traumatic brain injury. AJNR Am J Neuroradiol 35(10):1930–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbott JF, Gean A, Yuh EL, Stiver SI (2014b) Calvarial fracture patterns on CT imaging predict risk of a delayed epidural hematoma following decompressive craniectomy for traumatic brain injury. AJNR Am J Neuroradiol 35:1930–1935. https://doi.org/10.3174/ajnr.A4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo S et al (2015) Characterizing major bleeding in patients with nonvalvular atrial fibrillation: a pharmacovigilance study of 27 467 patients taking rivaroxaban. Clin Cardiol 38(2):63–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor CA et al (2017) Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ 66(9):1–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian HL et al (2008) Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage. Surg Neurol 69(3):241–246. discussion 246

    Article  PubMed  Google Scholar 

  • Tong WS et al (2011) Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury. Neuroradiology 53(5):305–309

    Article  PubMed  Google Scholar 

  • Tsutsumi S, Ono H, Yasumoto Y (2017) Immobile cerebral veins in the context of positional brain shift: an undescribed risk factor for acute subdural hemorrhage. Surg Radiol Anat 39(10):1063–1067. https://doi.org/10.1007/s00276-017-1837-8

    Article  PubMed  Google Scholar 

  • van Gijn J, Rinkel GJ (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(Pt 2):249–278. https://doi.org/10.1093/brain/124.2.249

    Article  PubMed  Google Scholar 

  • Vega MB et al (2015) Traumatic brain injury presenting with bilateral basal ganglia hemorrhage. Neurol Neurochir Pol 49(6):456–459

    Article  PubMed  Google Scholar 

  • Verma RK et al (2013) Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol 82(9):1539–1545. https://doi.org/10.1016/j.ejrad.2013.03.021

    Article  PubMed  Google Scholar 

  • Vieira RC et al (2016) Diffuse axonal injury: epidemiology, outcome and associated risk factors. Front Neurol 7:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Vital RB et al (2016a) Spontaneous resolution of traumatic acute subdural haematomas: a systematic review. Neurocirugia (Astur) 27(3):129–135

    Article  Google Scholar 

  • Vital RB, Hamamoto Filho PT, Oliveira VA, Romero FR, Zanini MA (2016b) Spontaneous resolution of traumatic acute subdural haematomas: a systematic review. Neurocirugia (Asturias, Spain) 27:129–135. https://doi.org/10.1016/j.neucir.2015.05.003

    Article  Google Scholar 

  • Vos PE et al (2002) EFNS guideline on mild traumatic brain injury: report of an EFNS task force. Eur J Neurol 9(3):207–219

    Article  CAS  PubMed  Google Scholar 

  • Vos PE et al (2012) Mild traumatic brain injury. Eur J Neurol 19(2):191–198

    Article  CAS  PubMed  Google Scholar 

  • Wassef SN et al (2013) Traumatic intracranial hemorrhage in patients taking dabigatran: report of 3 cases and review of the literature. Neurosurgery 73(2):E368–E373. discussion E373-4

    Article  PubMed  Google Scholar 

  • Wong GK et al (2011a) Neurological outcome in patients with traumatic brain injury and its relationship with computed tomography patterns of traumatic subarachnoid hemorrhage. J Neurosurg 114(6):1510–1515

    Article  PubMed  Google Scholar 

  • Wong GK, Yeung JH, Graham CA, Zhu XL, Rainer TH, Poon WS (2011b) Neurological outcome in patients with traumatic brain injury and its relationship with computed tomography patterns of traumatic subarachnoid hemorrhage. J Neurosurg 114:1510–1515. https://doi.org/10.3171/2011.1.JNS101102

    Article  PubMed  Google Scholar 

  • Wu Z et al (2010a) Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 31(7):1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Li S, Lei J, An D, Haacke EM (2010b) Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 31:1302–1310. https://doi.org/10.3174/ajnr.A2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoganandan N et al (2009) Association of contact loading in diffuse axonal injuries from motor vehicle crashes. J Trauma 66(2):309–315

    PubMed  Google Scholar 

  • Yokobori S et al (2016a) Outcome and refractory factor of intensive treatment for geriatric traumatic brain injury: analysis of 1165 cases registered in the japan neurotrauma data bank. World Neurosurg 86:127–133 e1

    Article  PubMed  Google Scholar 

  • Yokobori S et al (2016b) Outcome and refractory factor of intensive treatment for geriatric traumatic brain injury: analysis of 1165 cases registered in the Japan Neurotrauma Data Bank. World Neurosurg. 86:127–133.e121. https://doi.org/10.1016/j.wneu.2015.09.105

    Article  PubMed  Google Scholar 

  • Yuh EL et al (2013) Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol 73(2):224–235. https://doi.org/10.1002/ana.23783

    Article  PubMed  Google Scholar 

  • Zwahlen RA et al (2007) Lateral impact in closed head injury: a substantially increased risk for diffuse axonal injury - a preliminary study. J Craniomaxillofac Surg 35(3):142–146

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Parts of the work were created within the framework of the doctoral thesis project of L Schmidt (Schmidt 2018). Interested readers may refer to this thesis as it contains further information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, L., Diettrich, A.I., Iacobellis, F., Wirth, S. (2022). Traumatic Haemorrhage. In: Scaglione, M., Çalli, C., Muto, M., Wirth, S. (eds) Emergency Radiology of the Head and Spine. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-91047-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91047-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91046-4

  • Online ISBN: 978-3-030-91047-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics