Skip to main content

Genetic and Genomic Research for Abiotic Stresses in Faba Bean

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Pulse Crops
  • 288 Accesses

Abstract

Faba bean is an important legume grown in diverse cropping systems in many regions. The crop suffers from diverse abiotic stresses which reduce the yield and limit its expansion to new niches. The major abiotic stresses are extreme temperature, drought, waterlogging, acidic soils and salinity. Breeding efforts for tolerance to abiotic stresses resulted in the development of cultivars for cold, heat, drought, and acidic soils for diverse environments. These were the results of traits deployment in the field which require long time. The application of modern speed method is considered one of pioneer innovation to ensure significant increase of the genetic gains and consequently the efficiency of the breeding programs. The genome wide association studies will be useful for the identification of efficient markers that can be used in the breeding program. This will open the scope to conduct precise screening for abiotic stress related traits in larger population in early generation allowing the shortening of breeding cycle and the increase of the selection intensity which will be expressed in higher attainable genetic gains in faba bean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MM, Morad MM, Roushdi M (1976) Some quality characteristics of selections of Viciafaba L. and their bearing upon field bean breeding. Z Pflanzenzuacht 77:72–79

    Google Scholar 

  • Abdelmula AA, Abuanja IK (2007) Genotypic responses, yield stability, and association between characters among some of Sudanese faba bean (Vicia faba L.) genotypes under heat stress. In: Conference on international agricultural research for development, University of Kassel-Witzenhausen and University of Göttingen, Germany, pp 9–11

    Google Scholar 

  • Abdelmula AA, Link W, Kittlitz EV, Stelling D (1999) Heterosis and inheritance of drought tolerance in faba bean, Vicia Faba L. Plant Breed 118(6):485–490

    Google Scholar 

  • Abdel-Wahab HH, Zahran HH (1981) Effects of salt stress on nitrogenase activity and growth of four legumes. Biol Planta (prague) 23:16–23

    Google Scholar 

  • Adcock ME, Lawes DA (1976) Self-fertility and the distribution of seed yield in Viciafaba L. Euphytica 25(1):89–96

    Google Scholar 

  • Ahmed MSH, Abd-El-Haleem, SHM, Bakheit MA et al (2008) Comparison of three selection methods for yield and components of three faba bean (Vicia faba L.) crosses. World J Agric Sci 4(5):635–639

    Google Scholar 

  • Agegnehu G, Fessehaie R (2006) Response of faba bean to phosphate fertilizer and weed control on nitisols of Ethiopian highlands. Ital J Agron 1(2):281–290

    Google Scholar 

  • Alexander M (1984) Ecology of rhizobium. In: Alexander M (ed) Biological nitrogen fixation: ecology, technology and physiology, vol 3. Plenum Press, New York, pp 9–50

    Google Scholar 

  • Ali MB, Welna GC, Sallam A, Martsch R, Balko C, Gebser B, Sass O, Link W (2016) Association analyses to genetically improve drought and freezing tolerance of faba bean (Vicia faba L.). Crop Sci 56(3):1036–1048

    Google Scholar 

  • Amede T, Schubert S (2003) Mechanisms of drought resistance in grain: II Stomatal regulation and root growth. SINET: Ethiop J Sci 26(2):137–144

    Google Scholar 

  • Arbaoui M, Link W (2008) Effect of hardening on frost tolerance and fatty acid composition of leaves and stems of a set of faba bean (Vicia faba L.) genotypes. Euphytica 162(2):211–219

    Google Scholar 

  • Arbaoui M, Balko C, Link W (2008) Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crops Res 106(1):60–67

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture, vol 29. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Babiker Z, Maalouf F, Hamwieh A, Baum M, Omer O, Alhashmi A (2018) New SSR markers related to heat tolerance in faba bean under diverse environments. In: Seventh international food legumes research conference, Marrakesh, Morocco, May 06–08, 2018. Oral presentation in Workshop 3, p 100

    Google Scholar 

  • Badaruddin M, Meyer DW (2001) Factors modifying frost tolerance of legume species. Crop Sci 41(6):1911–1916

    Google Scholar 

  • Belachew KY, Nagel KA, Fiorani F, Stoddard FL (2018) Diversity in root growth responses to moisture deficit in young faba bean (Vicia faba L.) plants. Peer J 6:e4401

    Google Scholar 

  • Belachew KY, Nagel KA, Poorter H, Stoddard FL (2019) Association of shoot and root responses to water deficit in young faba bean (Vicia faba L.) plants. Front Plant Sci 10:1063

    Google Scholar 

  • Bhattacharya J, Saha NK, Mondal MK, Bhandari H, Humphreys E (2019) The feasibility of high yielding aus-aman-rabi cropping systems in the polders of the low salinity coastal zone of Bangladesh. Field Crops Res 234:33–46

    Google Scholar 

  • Bishop J, Potts SG, Jones HE (2016) Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J Agron Crop Sci 202(6):508–517

    Google Scholar 

  • Bond DA, Jellis GJ, Rowland GG, Le Guen J, Robertson LD, Khalil SA, Li-Juan L (1994) Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Springer, Dordrecht, pp 592–616

    Google Scholar 

  • Bozzini A, Chiaretti D (1999) The genetic improvement of the Mediterranean faba bean (Vicia faba L.). III. Development of obligate self fertile lines. J Genet Breed 53:207–214

    Google Scholar 

  • Bulut F, Akinci S (2010) The effect of salinity on growth and nutrient composition in broad bean (Vicia faba L.) seedlings. Fresenius Environ Bull 19(12):2901–2910

    Google Scholar 

  • Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W (2017) Proteome profiling of Paulownia seedlings infected with phytoplasma. Front Plant Sci 8:342

    PubMed  PubMed Central  Google Scholar 

  • Caracuta V, Weinstein-Evron M, Kaufman D, Yeshurun R, Silvent J, & Boaretto E (2016) 14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean. Scientific reports 6(1):1–6

    Google Scholar 

  • Carrillo-Perdomo E, Vidal A, Kreplak J, Duborjal H, Leveugle M, Duarte J, Tayeh N (2020) Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep 10(1):1–14

    Google Scholar 

  • Cordovilla MP, Ocana A, Ligero F, Lluch C (1995a) Growth and macronutrient contents of faba bean plants: effects of salinity and nitrate nutrition. J Plant Nutr 18(8):1611–1628

    CAS  Google Scholar 

  • Cordovilla MP, Ocana A, Ligero F, Lluch C (1995b) Salinity effects on growth analysis and nutrient composition in four grain legumes-rhizobium symbiosis. J Plant Nutr 18(8):1595–1609

    CAS  Google Scholar 

  • Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133(2):253–262

    CAS  Google Scholar 

  • Cubero JI (1974) On the evolution of Vicia faba L. Theor Appl Genet 45(2):47–51

    CAS  PubMed  Google Scholar 

  • Cubero JI, Moreno MT (1984) Breeding for self-fertility. In: Hebblethwaite PD, Dawkins TCK, Heath MC, Lockwood G (eds) Vicia faba: agronomy, physiology and breeding. Springer, Dordrecht, pp 209–217

    Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PLoS ONE 10(6):e0127401

    Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26(3):371–376

    CAS  Google Scholar 

  • Dodd JR, Mallarino AP (2005) Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn–soybean rotations. Soil Sci Soc Amer J 69:1118–1128

    CAS  Google Scholar 

  • Drayner JM (1959) Self-and cross-fertility in field beans (Vicia faba Linn.). J Agric Sci 53(3):387–403

    Google Scholar 

  • Duc G, Picard J (1986) Note on the presence of the sym-1 gene in Vicia faba hampering its symbiosis with Rhizobium leguminosarum. Euphytica 35(1):61–64

    Google Scholar 

  • Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong X (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res 115(3):270–278

    Google Scholar 

  • Elsheikh EAE, Wood M (1990) Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). J Exp Bot 41(10):1263–1269

    Google Scholar 

  • Erith AG (1930) The inheritance of colour, size and form of seeds, and flower colour in vicia faba L. Genetica 12(6):562–562

    Google Scholar 

  • FAO (2021) https://www.fao.org/faostat/en/%25data. Accessed 30 Nov 2020

  • Fekadu E, Kibret K, Melese A, Bedadi B, Yitaferu B, Mishra BB (2017) Effects of lime, mineral P, farmyard manure and compost on selected chemical properties of acid soils in Lay Gayint district, Northwestern Highlands of Ethiopia. Intl J Plant Soil Sci 19(2):1–16

    Google Scholar 

  • Flajoulot S, Ronfort J, Baudouin P, Barre P, Huguet T, Huyghe C, Julier B (2005) Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor Appl Genet 111(7):1420–1429

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Funct Plant Biol 22(6):875–884

    Google Scholar 

  • Francois LE, Maas EV (1994) Crop response and management on salt affected soils. In: Pessarakli N (ed) Handbook of plant and crop stress. M. Dekker, New York, pp 149–180

    Google Scholar 

  • Gasim S, Link W (2007) Agronomic performance and the effect of self-fertilization on German winter faba beans. J Central Eur Agri 8(1):121–128

    Google Scholar 

  • Gemechu K, Asnake F, Million E (2016) Reflections on highland pulses improvement research in Ethiopia. Ethiop J Agric Sci 1(16):17–50

    Google Scholar 

  • Ghaouti L, Vogt-Kaute W, Link W (2008) Development of locally-adapted faba bean cultivars for organic conditions in Germany through a participatory breeding approach. Euphytica 162(2):257–268

    Google Scholar 

  • Gharzeddin K, Maalouf F, Khoury B, Abou-Khater L, Christmann S, El Dine NAJ (2019) Efficiency of different breeding strategies in improving the faba bean productivity for sustainable agriculture. Euphytica 215(12):203

    CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944–2963

    CAS  PubMed  Google Scholar 

  • Göl Åž, DoÄŸanlar S, Frary A (2017) Relationship between geographical origin, seed size and genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Mol Genet Genom 292(5):991–999

    Google Scholar 

  • Hawtin GC (1982) The genetic improvement of faba bean. In: Hawtin G, Webb C (eds) Faba bean improvement. Springer, Dordrecht, pp 15–32

    Google Scholar 

  • Herzog H (1987b) Freezing resistance and development of faba beans as affected by ambient temperature, soil moisture and variety. J Agron Crop Sci 159(2):90–100

    Google Scholar 

  • Herzog H (1989) Influence of pre-hardening duration and de-hardening temperatures on varietal freezing resistance in faba beans (Vicia faba L.).Agron J 9(1):55–61

    Google Scholar 

  • Herzog H, Olszewski A (1998) A rapid method for measuring freezing resistance in crop plants. J Agron Crop Sci 181(2):71–79

    Google Scholar 

  • Hu J, Maalouf F, Dong H, Hawkins C, Zhang Z, Ma Y, Coyne C, Jin D, Yu LX, Babiker Z, Hamwieh A, Abou-Khater L, Baum M (2018) Enhancing faba bean (Vicia faba L.) germplasm for resilience to temperature Extremes. In: Seventh international food legumes research conference, Marrakesh, Morocco

    Google Scholar 

  • Ibrahim HM (2015) Effectiveness of breeding methods for production of superior genotypes and maintenance of genetic variance in faba bean (Vicia faba L.). Amer J Life Sci 3(1):11–16

    Google Scholar 

  • Jaaska V (1997) Isoenzyme diversity and phylogenetic affinities in Vicia subgenus Vicia (Fabaceae). Genet Resour Crop Evol 44(6):557–574

    Google Scholar 

  • Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crops Res 115(3):203–216

    Google Scholar 

  • Kambal AE, Bond DA, Toynbee-Clarke G (1976) A study of the pollination mechanism in field beans (Vicia faba L.). J Agric Sci Cambridge 87:519–526

    Google Scholar 

  • Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M, Oweis T, Malhotra RS (2001) Response to soil salinity of two chickpea varieties differing in drought tolerance. Agric Water Manag 50(2):83–96

    Google Scholar 

  • Katerji N, Van Hoorn JW, Fares C, Hamdy A, Mastrorilli M, Oweis T (2005) Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric Water Manag 75(2):85–91

    Google Scholar 

  • Katerji N, Mastrorilli M, Lahmer FZ, Maalouf F, Oweis T (2011) Faba bean productivity in saline–drought conditions. Eur J Agron 35(1):2–12

    Google Scholar 

  • Kaur S, Kimber RB, Cogan NO, Materne M, Forster JW, Paull JG (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217:47–55

    PubMed  Google Scholar 

  • Keneni A, Assefa F, Prabu PC (2010) Characterization of acid and salt tolerant rhizobial strains isolated from faba bean fields of Wollo, Northern Ethiopia. J Agr Sci Technol 12:365–376

    CAS  Google Scholar 

  • Khan HrR, Link W, Hocking TJ, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217

    Google Scholar 

  • Khan MA, Alghamdi SS, Ammar MH, Sun Q, Teng F, Migdadi HM, Al-Faifi SA (2019) Transcriptome profiling of faba bean (Vicia faba L.) drought-tolerant variety hassawi-2 under drought stress using RNA sequencing. Elect J Biotechnol 39:15–29

    CAS  Google Scholar 

  • Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One 8(5):e63107

    Google Scholar 

  • Kisinyo P, Palapala VA, Gudu S, Opala PA, Othieno C, Okalebo JR, Otinga AN (2014) Recent advances towards understanding and managing Kenyan acid soils for improved crop production. Afr J Agric Res 9(31):2397–2408

    Google Scholar 

  • Ladizinsky G (1998) Origin of agriculture. Chapter 1. In: Plant evolution under domestication. Springer, Dordrecht, Netherlands, pp 1–60. https://doi.org/10.1007/978-94-011-4429-2

  • Landry EJ, Lafferty JE, Coyne CJ, Pan WL, Hu J (2015) Registration of four winter-hardy faba bean germplasm lines for use in winter pulse and cover crop development. J Plant Registr 9(3):367–370

    Google Scholar 

  • Landry EJ, Coyne CJ, McGee RJ, Hu J (2016) Adaptation of autumn-sown faba bean germplasm to southeastern Washington. Agron J 108(1):301–308

    Google Scholar 

  • Lavania D, Siddiqui MH, Al-Whaibi MH, Singh AK, Kumar R, Grover A (2015) Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiol Planta 37(1):1737

    Google Scholar 

  • Lawes DA, Bond DA, Poulsen MH (1983) Classification, origin, breeding methods and objectives. In: Habblewaite PD (ed) The Faba Bean (Vicia faba L.). Butterworth, London, pp 23–76

    Google Scholar 

  • Li P, Zhang Y, Wu X, Liu Y (2018) Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai–Tibet Plateau of China. 3 Biotechnology 8(2):110

    Google Scholar 

  • Li L, Yuan TZ, Setia R, Raja RB, Zhang B, Ai Y (2019) Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chem 276:599–607

    CAS  PubMed  Google Scholar 

  • Link W, Ederer W, Metz P, Buiel H, Melchinger AE (1994a) Genotypic and environmental variation for degree of cross-fertilization in faba bean. Crop Sci 34(4):960–964

    Google Scholar 

  • Link W, Stelling D, Ebmeyer E (1994b) Factors determining the performance of synthetics in Vicia faba L. 1. Heterogeneity, heterozygosity, and degree of cross-fertilization. Euphytica 75(1–2):77–84

    Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crops Res 115(3):287–296

    Google Scholar 

  • Longobardi F, Sacco D, Casiello G, Ventrella A, Sacco A (2015) Chemical profile of the Carpino broad bean by conventional and innovative physicochemical analyses. J Food Qual 38(4):273–284

    CAS  Google Scholar 

  • Loss SP, Siddique KHM (1997) Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments I. Seed yield and yield components. Field Crops Res 52(1–2):17–28

    Google Scholar 

  • Maalouf FS, Suso MJ, Moreno MT (2002) Comparative performance of faba bean synthetics developed from different parental number (Vicia faba L). J Genet Breed 56(3):521–258

    Google Scholar 

  • Maalouf F, Ahmed KS, Munzir K, Khalil S (2008) The effect of mating system for developing combined resistance to chocolate spot and Ascochyta blight in faba bean. In: Modern variety breeding for present and future needs. Proceedings of the 18th Eucarpia general congress, Universidad Politécnica de Valencia, Valencia, p 416

    Google Scholar 

  • Maalouf F, Ahmed S, Somanagouda P (2018) Developing improved varieties of faba bean. In Sivasankar S et al. (ed.), Achieving sustainable cultivation of grain legumes Volume 2: Improving cultivation of particular grain legumes, Burleigh Dodds Science Publishing, Cambridge, UK (ISBN:978.1786761408; https://www.bdspublishing.com

  • Maalouf F, Nawar M, Hamwieh A, Amri A, Xuxiao Z, Shiying B, Tao Y (2013) Faba bean genetics and genomics and their use in breeding program. In: Singh M, Bisht T (eds) Genetic and genomic resources for grain legume improvement. ElseiverInsight, London, pp 113–136

    Google Scholar 

  • Maalouf F, Nachit M, Ghanem ME, Singh M (2015) Evaluation of faba bean breeding lines for spectral indices, yield traits and yield stability under diverse environments. Crop Pasture Sci 66(10):1012–1023

    Google Scholar 

  • Maalouf F, Hu J, O’Sullivan DM, Zong X, Hamwieh A, Kumar S, Baum M (2019) Breeding and genomics status in faba bean (Vicia faba). Plant Breed 138(4):465–473

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance: current assessment. ASCE J Lrrig Drain Div 103(2):115–134

    Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. Agric Drain 38:55–108

    Google Scholar 

  • Melese A, Gebrekidan H, Yli-Halla M, Yitaferu B (2015) Phosphorus status, inorganic phosphorus forms, and other physicochemical properties of acid soils of Farta district, Northwestern highlands of Ethiopia. Appl Environ Soil Sci 4:1–11

    Google Scholar 

  • Mesfin S, Almeida Oliveira LA, Yazew E, Bresci E, Castelli G (2019) Spatial variability of soil moisture in newly implemented agricultural bench terraces in the Ethiopian plateau. Water 11(10):2134

    Google Scholar 

  • Mobini S, Khazaei H, Warkentin TD, Vandenberg A (2020) Shortening the generation cycle in faba bean (Vicia faba) by application of cytokinin and cold stress to assist speed breeding. Plant Breed 139(6):1181–1189

    CAS  Google Scholar 

  • Müller BS, Neves LG, de Almeida Filho JE, Resende MF, Muñoz PR, dos Santos PE et al (2017) Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 18(1):524

    PubMed  PubMed Central  Google Scholar 

  • Muratova VS (1931) Common beans (Vicia faba L.). Bull Appl Bot Genet Plant Breed Suppl 50:1–298

    Google Scholar 

  • Mussa J, Dereje G, Gemechu K (2008) Procedures of faba bean improvement through hybridization. P. 48. Technical Manual No. 21, Ethiopian Institute of Agricultural Research

    Google Scholar 

  • Nassib AM, Ibrahim AA, Saber HA (1978) Broomrape (Orobanche crenata) resistance in broad beans: breeding work in Egypt. In: Food legume improvement and development proceedings. IDRC, Ottawa, ON, CA, Workshop, ICARDA, May 2 to 7, Aleppo, Syria

    Google Scholar 

  • Nedumaran S, Abinaya P, Jyosthnaa P, Shraavya B, Rao P, Bantilan C (2015) Grain legumes production, consumption and trade trends in developing countries; Working Paper Series No. 60, ICRISAT, Patancheru, Telangana, India

    Google Scholar 

  • Neme K, Bultosa G, Bussa N (2015) Nutrient and functional properties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours. Intl J Food Sci Technol 50(11):2375–2382. https://doi.org/10.1111/ijfs.12903

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46(3):293–307

    CAS  Google Scholar 

  • O’Sullivan DM, Angra D (2016) Advances in faba bean genetics and genomics. Front Genet 7:150

    PubMed  PubMed Central  Google Scholar 

  • Patrick JW, Stoddard FL (2010) Physiology of flowering and grain filling in faba bean. Field Crops Res 115(3):234–242

    Google Scholar 

  • Patto MV, Torres AM, Koblizkova A, Macas J, Cubero JI (1999) Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theor Appl Genet 98(5):736–743

    Google Scholar 

  • Pessarakli M, Huber JT, Tucker TC (1989) Protein synthesis in green-beans under salt stress with two nitrogen sources. J Plant Nutr 12(11):1361–1377

    CAS  Google Scholar 

  • Polignano GB, Alba E, Uggenti P, Scippa G (1999) Geographical patterns of variation in Bari faba bean germplasm collection. Genet Resour Crop Evol 46(2):183–192

    Google Scholar 

  • Poulsen MH (1981) Survey of the breeding work on Vicia faba at VEG Saatzucht Gotha/Friedrichswerth. In: Thompson R (ed) Vicia faba: physiology and breeding. Springer, Dordrecht, pp 259–265

    Google Scholar 

  • Prasad PV, Boote KJ, Allen Jr LH (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric Forest Meteorol 139(3–4):237–251

    Google Scholar 

  • Rai R, Nasar SKT, Singh SJ, Prasad V (1985) Interactions between Rhizobium strains and lentil (Lens culinaris Linn.) genotypes under salt stress. J Agric Sci 104(1):199–205

    Google Scholar 

  • Ramsay G (1997) Inheritance and linkage of a gene for testa-imposed seed dormancy in faba bean (Vicia faba L.). Plant Breed 116(3):287–289

    Google Scholar 

  • Ray H, Georges F (2010) A genomic approach to nutritional, pharmacological and genetic issues of faba bean (Vicia faba): prospects for genetic modifications. GM Crops 1(2):99–106

    PubMed  Google Scholar 

  • Redden R, Zong X, Norton RM, Stoddard FL, Maalouf F et al (2018) Efficient and sustainable production of faba bean. In: Sivasankar S, Bergvinson D, Gaur P, Agrawal SK, Beebe S, Tamo M (eds) Achieving sustainable cultivation of grain legumes Volume 2: Improving cultivation of particular grain legumes. Burleigh Dodds Science Publishing, Cambridge, pp 169–296

    Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32(14):1807–1818

    CAS  PubMed  Google Scholar 

  • Rowland G, Duc G, Picard J (1986) Fertility components in a faba bean line near isogenic for male sterility. Can J Plant Sci 66:235–239

    Google Scholar 

  • Rowland GG (1987) A recurrent selection scheme for faba bean. Can J plant sci 67(1):79–85

    Google Scholar 

  • Saadallah K, Drevon JJ, Hajji M, Abdelly C (2001) Genotypic variability for tolerance to salinity of N2-fixing common bean (Phaseolus vulgaris). Agronomie 21(6–7):675–682

    Google Scholar 

  • Satovic Z, Avila CM, Cruz-Izquierdo S, Díaz-Ruíz R, García-Ruíz GM, Palomino C et al (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genomics 14(1):932

    Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15(4):267–280

    Google Scholar 

  • Sillero JC, Villegas-Fernández AM, Thomas J, Rojas-Molina MM, Emeran AA, Fernández-Aparicio M, Rubiales D (2010) Faba bean breeding for disease resistance. Field Crops Res 115(3):297–307

    Google Scholar 

  • Singh AK, Bhatt BP, Upadhyaya A, Kumar, Sundaram PK, Singh BK et al (2012) Improvement of faba bean (Vicia faba L.) yield and quality through biotechnological approach: a review. Afr J Biotechnol 11(87):15264–15271

    Google Scholar 

  • Singleton PW, El Swaify SA, Bohlool BB (1982) Effect of salinity on Rhizobium growth and survival. Appl Environ Microbiol 44(4):884–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjödin JAN (1970) Induced asynaptic mutants in Vicia faba L. Hereditas 66:215–232. https://doi.org/10.1111/j.1601-5223.1970.tb02347.x

    Article  Google Scholar 

  • Sjödin JAN (1970) Induced morphological variation in Vicia faba L. Hereditas 67(2):155–179.

    Google Scholar 

  • Stelling D, Link W, Ebmeyer E (1994) Factors determining the performance of synthetics in Vicia faba L. 2. Syn-generation. Euphytica 75(1–2):85–93

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147(1–2):167–186

    Google Scholar 

  • Suso MJ, Moreno MT, Melchinger AE (1999) Variation in outcrossing rate and genetic structure on six cultivars of Vicia faba L. as affected by geographic location and year. Plant Breed 118(4):347–350

    Google Scholar 

  • Temesgen T, Keneni G, Sefera T, & Jarso M (2015) Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. The crop j 3(3):258–268

    Google Scholar 

  • Tanno KI, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium BP. Vegetat Hist Archaeobot 15(3):197–204

    Google Scholar 

  • Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2008) Determining the sources of heterogeneity in Greek faba bean local populations. Field Crops Res 105(1–2):124–130

    Google Scholar 

  • Tester M, Davenport R (2003) Na tolerance and Na transportation in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toker C, Lluch C, Tejera NA, Serraj R, Siddique KHM (2007) Abiotic stresses. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CABI International, Oxford, pp 474–496

    Google Scholar 

  • Torres AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85(8):937–945

    CAS  PubMed  Google Scholar 

  • Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Res 115(3):243–252

    Google Scholar 

  • Torres AM, Avila CM, Stoddard FL, & Cubero JI (2012) Faba bean. Pérez de la Vega M, Torres AM, Cubero JI, Kole C , (Eds). Genetics, genomics and breeding in crop plants: cool season food legumes. New Hampshire, Jersey,: Plymouth: Science Pubs Inc

    Google Scholar 

  • Tuyen D, Lal S, Xu D (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121(2): 229–236. https://doi.org/10.1007/s00122-010-1304-y

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2014) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34(1–3):169–194

    Google Scholar 

  • Viana JMS (2007) Heterosis and combining ability analyses from the partial diallel. Bragantia 66(1):641–647

    Google Scholar 

  • Wang X, Shan X, Wu Y, Su S, Li S et al (2016) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteom 146: 14–24. pmid:27321579

    Google Scholar 

  • Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K et al (2016) A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). Plant Biotechnol J 14(1):177–185

    Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    CAS  PubMed  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteom 5:484–496

    CAS  Google Scholar 

  • Yigezu YA, El-Shater T, Boughlala M, Bishaw Z, Niane AA, Maalouf F, Tadesse DW, Wery J, Boutfiras M, Aw-Hassan A (2019) Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agron Sustain Dev 39(6):58

    Google Scholar 

  • Zeid M, Schön CC, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107(7):1304–1314

    CAS  PubMed  Google Scholar 

  • Zong X, Liu X, Guan J, Wang S, Liu Q, Paull JG, Redden R (2009) Molecular variation among Chinese and global winter faba bean germplasm. Theor Appl Genet 118(5):971–978

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Maalouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maalouf, F., Khater, L.A., Babiker, Z., Mohamed, A. (2022). Genetic and Genomic Research for Abiotic Stresses in Faba Bean. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91039-6_7

Download citation

Publish with us

Policies and ethics