Skip to main content

Ultrasound for Improved Encapsulation and Crystallization with Focus on Pharmaceutical Applications

  • Chapter
  • First Online:
Optimization of Pharmaceutical Processes

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 189))

Abstract

A growing need for developing novel technologies for obtaining better quality products with enhanced process efficiency has created promise for application of ultrasound in the area of food and pharmaceutical processing. This chapter offers discussion on the governing mechanisms for the improvement based on the use of ultrasound, different ultrasonic reactor configurations, as well as the selection of operating conditions for the specific applications of encapsulation and crystallization. The effects of ultrasound during the processing such as liquid circulation, turbulence, and local hot spots drive the observed intensification. Analysis of reactor designs revealed that there is a need for development of continuous reactors with usage of a large number of transducers so as to give the desired processing benefits based on uniform distribution of cavitational activity. It has been also elucidated that application of ultrasound under the desired conditions can give advantages such as greater control over particle size, enhanced solubility of drugs, controlled crystallization, and production of nanomaterials. Overall, this chapter has clearly demonstrated the advantages of ultrasound and highlights the need for specific efforts required for exploitation at commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziaee, A., Albadarin, A., Padrela, L., Ung, M.-T., Femmer, T., Walker, G., & O'Reilly, E. (2020). A rational approach towards spray drying of biopharmaceuticals: The case of lysozyme. Powder Technology, 366(1), 206-215.

    Article  Google Scholar 

  2. Gogate. (2021). The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing. In J. Gallego-Juarez, & K. Graff, Power Ultrasonics: Applications of High-Intensity Ultrasound (Woodhead Publishing Series in Electronic and Optical Materials) (1 ed., pp. 911-935). Woodhead Publishing.

    Google Scholar 

  3. Jyothi, N., Prasanna, P., Sakarkar, S., Prabha, K., Ramaiah, P., & Srawan, G. (2010). Microencapsulation Techniques, Factors Influencing Encapsulation Efficiency: A Review. Journal of Microencapsulation, 3(1), 187–197.

    Article  Google Scholar 

  4. Zuidam, N., & Shimoni, E. (2009). Overview of Microencapsulates for Use in Food. In N. Zuidam, & V. Nedovic, Encapsulation Technologies for Active Food Ingredients and Food Processing (2010 ed., pp. 3–29). Springer.

    Google Scholar 

  5. Dalmoro, A., Barba, A., Lamberti, G., & d’Amore, M. (2012). Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. European Journal of Pharmaceutics and Biopharmaceutics, 80(3), 471-477.

    Article  Google Scholar 

  6. Kirby, C. (1991). Microencapsulation and controlled delivery of food ingredients. Food Science and Technology Today, 38(1), 74–80.

    Google Scholar 

  7. Sanguansri, L., & Augustin, M. (2010). Microencapsulation in functional food. In J. Smith, & E. Charter, Functional Food Product Development (1 ed., pp. 3–23). Wiley-Blackwell.

    Google Scholar 

  8. Kita, K., & Dittrich, C. (2011). Drug delivery vehicles with improved encapsulation efficiency: taking advantage of specific drug–carrier interactions. Expert Opinion on Drug Delivery, 8(3), 329-342.

    Article  Google Scholar 

  9. Tan, M., & Danquah, M. (2012). Drug and protein encapsulation by emulsification: technology enhancement using foam formulations. Chemical Engineering & Technology, 35(4), 618-626.

    Article  Google Scholar 

  10. Dias, M., Ferreira, I., & Barreiro, M. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035-1052.

    Article  Google Scholar 

  11. Gurruchaga, H., Saenz del Burgo, L., Ciriza, J., Orive, G., Hernández, R., & Pedraz, J. (2015). Advances in cell encapsulation technology and its application in drug delivery. Expert Opinion on Drug Delivery, 12(8), 1251-1267.

    Article  Google Scholar 

  12. Roos, Y., & Livney, Y. (2016). Engineering Foods for Bioactives Stability and Delivery (Food Engineering Series) (1 ed.). Springer.

    Google Scholar 

  13. Ðorđević , V., Paraskevopoulou, A., Mantzouridou, F., Lalou, S., Pantić, M., Bugarski, B., & Nedović, V. (2019). Encapsulation Technologies for Food Industry. In V. Nedović, P. Raspor, J. Lević, T. Šaponjac, & G. Barbosa-Cánovas, Emerging and Traditional Technologies for Safe, Healthy and Quality Food (Food Engineering Series) (pp. 329-382). Springer.

    Google Scholar 

  14. Javadi, M., Pitt, W., Belnap, D., Tsosie, N., & Hartley, J. (2012). Encapsulating Nanoemulsions Inside eLiposomes for Ultrasonic Drug Delivery. Langmuir, 28(41), 14720-14729.

    Article  Google Scholar 

  15. Wang, W., Feng, Y., Chen, W., Wang, Y., Wilder, G., Liu, D., & Yin, Y. (2020). Ultrasonic modification of pectin for enhanced 2-furfurylthiol encapsulation: process optimization and mechanisms. Journal of the Science of Food and Agriculture, 100(5).

    Google Scholar 

  16. Fei, J., Cui, Y., He, Q., & Li, J. (2012). Assembly of multilayer capsules for drug encapsulation and controlled release. In G. Decher, & J. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (2 ed., pp. 777–799). Wiley-VCH.

    Google Scholar 

  17. Yoon, C., & Park, J. (2010). Ultrasound-mediated gene delivery. Expert Opinion on Drug Delivery, 7(3), 321-330.

    Article  Google Scholar 

  18. Tao, Y., & Sun, D.-W. (2014). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594.

    Article  Google Scholar 

  19. Pitt, W., & Husseini, G. (2013). Ultrasound-Triggered Release from Micelles. In C. Alvarez-Lorenzo, & A. Concheiro, Smart Materials for Drug Delivery (Rsc Smart Materials) (Vol. 1, pp. 148-178). Royal Society of Chemistry.

    Google Scholar 

  20. Ré, M.-I. (2006). Formulating drug delivery systems by spray drying. Drying Technology, 24(4), 433-446.

    Article  Google Scholar 

  21. Priscilla Paiva, L., Pires, A., & Serra, O. (2007). A low-cost ultrasonic spray dryer to produce spherical microparticles from polymeric matrices. Química Nova, 30(7), 1744-1746.

    Article  Google Scholar 

  22. Cal, K., & Sollohub, K. (2010). Spray Drying Technique. I: Hardware and Process Parameters. Journal of Pharmaceutical Sciences, 99(2), 575-586.

    Article  Google Scholar 

  23. Graves, R., Poole, D., Moiseyev, R., Bostanian, L., & Mandal, T. (2008). Encapsulation of Indomethacin Using Coaxial Ultrasonic Atomization Followed by Solvent Evaporation. Drug Development and Industrial Pharmacy, 28(6), 419-426.

    Article  Google Scholar 

  24. Searles, J., & Mohan, G. (2010). Spray Drying of Biopharmaceuticals and Vaccines. In F. Jameel, & S. Hershenson, Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals (1 ed., pp. 739–761). Wiley.

    Google Scholar 

  25. Khaire, R., & Gogate, P. (2020). Novel approaches based on ultrasound for spray drying of food and bioactive compounds. Drying Technology, 1-22.

    Google Scholar 

  26. Bittner, B., & Kissel, T. (1999). Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. Journal of Microencapsulation, 16(3), 325-341.

    Article  Google Scholar 

  27. Höhne, P., Mieller, B., & Rabe, T. (2020). Advancing spray granulation by ultrasound atomization. International Journal of Applied Ceramic Technology, 17(5), 2212-2219.

    Article  Google Scholar 

  28. Vishali, D., Monisha, J., Sivakamasundari, S., Moses, J., & Anandharamakrishnan, C. (2019). Spray freeze drying: Emerging applications in drug delivery. Journal of Controlled Release, 300, 93-101.

    Article  Google Scholar 

  29. Febriyenti Febriyenti, N. Mohtar, Nornisah Mohamed, M. Hamdan, S. N. M. Salleh (2014). Comparison of freeze drying and spray drying methods of haruan extract. International Journal of Drug Delivery, 6(3), 286-291.

    Google Scholar 

  30. Gao, Y., Zhu, C.-L., Zhang, X.-X., Gan, L., & Gan, Y. (2011). Lipid–polymer composite microspheres for colon-specific drug delivery prepared using an ultrasonic spray freeze-drying technique. Journal of Microencapsulation, 28(6), 549=556.

    Google Scholar 

  31. D’Addio, S., Kwok, P., Chan, J., Benson, B., Prud’homme, R., & Chan, H.-K. (2013). Aerosol Delivery of Nanoparticles in Uniform Mannitol Carriers Formulated by Ultrasonic Spray Freeze Drying. Pharmaceutical Research, 30(11), 2891-2901.

    Article  Google Scholar 

  32. Maa, Y.-F., Ameri, M., Shu, C., Payne, L., & Chen, D. (2004). Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. Journal of Pharmaceutical Sciences, 93(7), 1912-1923.

    Article  Google Scholar 

  33. Wanning, S., Süverkrüp, R., & Lamprecht, A. (2015). Pharmaceutical spray freeze drying. International Journal of Pharmaceutics, 488(2), 136-153.

    Article  Google Scholar 

  34. D’Addio, S., Chan, J., Kwok, P., Prud’homme, R., & Chan, H.-K. (2012). Constant size, variable density aerosol particles by ultrasonic spray freeze drying. International Journal of Pharmaceutics, 427(2), 185-191.

    Article  Google Scholar 

  35. Leuenberger, H., Plitzko, M., & Puchkov, M. (2006). Spray freeze drying in a fluidized bed at normal and low pressure. Drying Technology, 24(6), 711-719.

    Article  Google Scholar 

  36. Ali, M., & Lamprecht, A. (2014). Spray freeze drying for dry powder inhalation of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 87(3), 510-517.

    Article  Google Scholar 

  37. Maniruzzaman, M., Boateng, J., Snowden, M., & Douroumis, D. (2012). A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharmaceutics, 2012(436763), 1-9.

    Article  Google Scholar 

  38. Sarabu, S., Bandari, S., Kallakunta, V., Tiwari, R., Patil, H., & Repka, M. (2019). An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opinion on Drug Delivery, 16(6), 567-582.

    Article  Google Scholar 

  39. Ávila-Orta, C., González-Morones, P., Valdez, D., González-Sánchez, A., Martinez-Colunga, J., Mata-Padilla, J., & Cruz-Delgado, V. (2019). Ultrasound-Assisted Melt Extrusion of Polymer Nanocomposites. In S. Sivasankaran, Nanocomposites - Recent Evolutions. IntechOpen.

    Google Scholar 

  40. Repka, M., Shah, S., Lu, J., Maddineni, S., Morott, J., Patwardhan, K., & Mohammed, N. (2012). Melt extrusion: process to product. Expert opinion on drug delivery, 9(1), 105–125.

    Article  Google Scholar 

  41. Censi, R., Gigliobianco, M., Casadidio, C., & Di Martino, P. (2018). Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics, 10(3), 1-27.

    Article  Google Scholar 

  42. Chen, J., Chen, Y., Li, H., Lai, S.-Y., & Jow, J. (2010). Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrasonics Sonochemistry, 17(1), 66-71.

    Article  Google Scholar 

  43. Siddique, H., Brown, C., Houson, I., & Florence, A. (2015). Establishment of a continuous sonocrystallization process for lactose in an oscillatory baffled crystallizer. Organic Process Research & Development, 19(12), 1871-1881.

    Article  Google Scholar 

  44. Sander, J., Zeiger, B., & Suslick, K. (2014). Sonocrystallization and sonofragmentation. Ultrasonics Sonochemistry, 21(6), 1908-1915.

    Article  Google Scholar 

  45. Kim, H., & Suslick, K. (2018). The Effects of Ultrasound on Crystals: Sonocrystallization and Sonofragmentation. Crystals, 8(7).

    Google Scholar 

  46. Evrard, Q., Houard, F., Daiguebonne, C., Calvez, G., Suffren, Y., Guillou, O., Bernot, K. (2020). Sonocrystallization as an efficient way to control the size, morphology, and purity of coordination compound microcrystallites: application to a single-chain magnet. Inorganic Chemistry, 59(13), 9215-9226.

    Article  Google Scholar 

  47. Vancleef, A., Seurs, S., Jordens, J., Van Gerven, T., Thomassen, L., & Braeken, L. (2018). Reducing the induction time using ultrasound and high-shear mixing in a continuous crystallization process. Crystals, 8(8), 326-336.

    Article  Google Scholar 

  48. Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N., & Cains, P. (2005). Sonocrystallization: the use of ultrasound for improved industrial crystallization. Organic Process Research & Development, 9(6), 923-932.

    Article  Google Scholar 

  49. Liu, Y., van den Berg, M., & Alexander, A. (2017). Supersaturation dependence of glycine polymorphism using laser-induced nucleation, sonocrystallization and nucleation by mechanical shock. Physical Chemistry Chemical Physics, 19(29), 19386-19392.

    Article  Google Scholar 

  50. Gracin, S., Uusi-Penttilä, M., & Rasmuson, Å. (2005). Influence of Ultrasound on the Nucleation of Polymorphs ofp-Aminobenzoic Acid. Crystal Growth & Design, 5(5), 1787-1794.

    Article  Google Scholar 

  51. Njegić Džakula, B., Kontrec, J., Ukrainczyk, M., Sviben, S., & Kralj, D. (2014). Polymorphic composition and morphology of calcium carbonate as a function of ultrasonic irradiation. Crystal Research and Technology, 49(4), 244-256.

    Article  Google Scholar 

  52. Higaki, K., Ueno, S., Koyano, T., & Sato, K. (2001). Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. Journal of the American Oil Chemists' Society, 78(5), 513-518.

    Article  Google Scholar 

  53. Asgharzadehahmadi, S., Abdul Raman, A., Parthasarathy, R., & Sajjadi, B. (2016). Sonochemical reactors: Review on features, advantages and limitations. Renewable and Sustainable Energy Reviews, 63, 302-314.

    Article  Google Scholar 

  54. Bhirud, U., Gogate, P., Wilhelm, A., & Pandit, A. (2004). Ultrasonic bath with longitudinal vibrations: a novel configuration for efficient wastewater treatment. Ultrasonics Sonochemistry, 11(3-4), 143-147.

    Article  Google Scholar 

  55. Eder, R., Schrank, S., Besenhard, M., Roblegg, E., Gruber-Woelfler, H., & Khinast, J. (2012). Continuous Sonocrystallization of Acetylsalicylic Acid (ASA): Control of Crystal Size. Crystal Growth & Design, 12(10), 4733–4738.

    Article  Google Scholar 

  56. Yamaguchi, T., Nomura, M., Matsuoka, T., Koda, S., (2009) Effects of frequency and power of ultrasound on the size reduction of liposome, Chem Phys Lipids, 160 (1), 58–62.

    Article  Google Scholar 

  57. Servant, G. Laborde, J.L., Hita, A., Caltagirone, J.P., Gerad, A. (2003) On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10(3) 47–55

    Article  Google Scholar 

  58. Tatake, P.A., Pandit, A.B. (2002). Modeling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources, Chemical Engineering Science, 57 49–87

    Article  Google Scholar 

  59. Kumar, A., Kumaresan, T., Pandit, A.B., Joshi, J.B., (2006) Characterization of flow phenomena induced by ultrasonic horn. Chemical Engineering Science, 61(74) 10–20

    Article  Google Scholar 

  60. Kanthale, P.M., Gogate, P.R., Pandit, A.B., Wilhelm, A.M. (2003) Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound, Ultrasonics Sonochemistry, 10, 331–335

    Article  Google Scholar 

  61. Qian, D., Jiang, J.Z., Hansen, P.L. (2003) Preparation of ZnO nanocrystals via ultrasonic irradiation. Chemical Communications. 9, 1078–1079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Gogate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarode, C., Jagtap, Y., Gogate, P. (2022). Ultrasound for Improved Encapsulation and Crystallization with Focus on Pharmaceutical Applications. In: Fytopoulos, A., Ramachandran, R., Pardalos, P.M. (eds) Optimization of Pharmaceutical Processes. Springer Optimization and Its Applications, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-030-90924-6_8

Download citation

Publish with us

Policies and ethics