Skip to main content

Continuous Powder Feeding: Equipment Design and Material Considerations

  • Chapter
  • First Online:
Optimization of Pharmaceutical Processes

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 189))

  • 1249 Accesses

Abstract

The continuous feeding of raw materials is a fundamental initial step in the continuous production of solid dosage forms. The continuous feeding process is considered critical as deviations or disturbances in individual feeders may produce compositional variability in the following mixing steps. This variability may then impact downstream unit operations and result in a detrimental change to the quality attributes of the final product. To design a robust feeding process and optimise the feeding performance, it is essential to understand feeder design and the underlying relationships between the material properties, feeder tooling configuration and feeding process parameters. In this chapter a brief overview of continuous feeding equipment and feeder operation modes is provided. The chapter describes the equipment and process considerations for the design of a continuous feeding process, with a primary focus on loss-in-weight (LIW), twin-screw feeders, primarily employed during the continuous production of pharmaceutical solid dosage forms. The chapter finishes with a description of modelling approaches employed to investigate feeder performance and the integration of the feeding process to the subsequent steps of the overall continuous manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthiaux H, Marikh K, Gatumel C (2008) Continuous mixing of powder mixtures with pharmaceutical process constraints. Chem Eng Process Process Intensif 47:2315–2322. doi: https://doi.org/10.1016/j.cep.2008.01.009

    Article  Google Scholar 

  2. Coperion (2021) Feeders - Coperion. https://www.coperion.com/en/products-services/process-equipment/feeders. Accessed 20 Jan 2021

  3. Gericke (2021) Volumetric and gravimetric feeders. https://www.gerickegroup.com/feeding. Accessed 20 Jan 2021

  4. Schenck Process (2021) Products for pharmaceuticals and feeding. https://www.schenckprocess.com/products?industry=pharmaceuticals&technology=industrial-feeding-technology. Accessed 20 Jan 2021

  5. Escotet-Espinoza MS, Moghtadernejad S, Scicolone J, et al (2018) Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technol 339:659–676. doi: https://doi.org/10.1016/j.powtec.2018.08.042

    Article  Google Scholar 

  6. Van Snick B, Dhondt J, Pandelaere K, et al (2018a) A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes. Int J Pharm 549:415–435. doi: https://doi.org/10.1016/j.ijpharm.2018.08.014

    Article  Google Scholar 

  7. Messmer T (2013) Technical article choosing a feeder. https://www.schenckprocess.com/brochures/technical-reports. Accessed 20 Jan 2021

  8. Nowak S (2015) Optimizing feeding accuracy for your batch or continuous process. Powder Bulk Eng

    Google Scholar 

  9. Hanson J (2018) Control of a system of loss-in-weight feeders for drug product continuous manufacturing. Powder Technol 331:236–243. doi: https://doi.org/10.1016/j.powtec.2018.03.027

    Article  Google Scholar 

  10. Engisch WE, Muzzio FJ (2012) Method for characterization of loss-in-weight feeder equipment. Powder Technol 228:395–403. doi: https://doi.org/10.1016/j.powtec.2012.05.058

    Article  Google Scholar 

  11. Bostijn N, Dhondt J, Ryckaert A, et al (2019) A multivariate approach to predict the volumetric and gravimetric feeding behavior of a low feed rate feeder based on raw material properties. Int J Pharm 557:342–353. doi: https://doi.org/10.1016/j.ijpharm.2018.12.066

    Article  Google Scholar 

  12. Hopkins M (2006) LOSS in weight feeder systems. Meas Control 39:237–240. doi: https://doi.org/10.1177/002029400603900801

    Article  Google Scholar 

  13. Engisch WE, Muzzio FJ (2015) Feedrate deviations caused by hopper refill of loss-in-weight feeders. Powder Technol 283:389–400. doi: https://doi.org/10.1016/j.powtec.2015.06.001

    Article  Google Scholar 

  14. Nowak S (2016) Three ways to improve continuous loss-in-weight feeding accuracy. Powder Bulk Eng

    Google Scholar 

  15. Bates L (2000) Guide to the design, selection, and application of screw feeders. Professional Engineering Pub, pp 19–37

    Google Scholar 

  16. Dai J, Cui H, Grace JR (2012) Biomass feeding for thermochemical reactors. Prog Energy Combust Sci 38:716–736. doi: https://doi.org/10.1016/j.pecs.2012.04.002

    Article  Google Scholar 

  17. Tahir F, Palmer J, Khoo J, et al (2020) Development of feed factor prediction models for loss-in-weight powder feeders. Powder Technol 364:1025–1038. doi: https://doi.org/10.1016/j.powtec.2019.09.071

    Article  Google Scholar 

  18. Yadav IK, Holman J, Meehan E, et al (2019) Influence of material properties and equipment configuration on loss-in- weight feeder performance for drug product continuous manufacture. Powder Technol 348:126–137. doi: https://doi.org/10.1016/j.powtec.2019.01.071

    Article  Google Scholar 

  19. Faqih AMN, Alexander AW, Muzzio FJ, Tomassone MS (2007) A method for predicting hopper flow characteristics of pharmaceutical powders. Chem Eng Sci 62:1536–1542. doi: https://doi.org/10.1016/j.ces.2006.06.027

    Article  Google Scholar 

  20. Garg V, Mallick SS, Garcia-Trinanes P, Berry RJ (2018) An investigation into the flowability of fine powders used in pharmaceutical industries. Powder Technol 336:375–382. doi: https://doi.org/10.1016/j.powtec.2018.06.014

    Article  Google Scholar 

  21. Jager PD, Bramante T, Luner PE (2015) Assessment of pharmaceutical powder flowability using shear cell-based methods and application of Jenike’s methodology. J Pharm Sci 104:3804–3813. doi: https://doi.org/10.1002/jps.24600

    Article  Google Scholar 

  22. Wong J, Kwok PCL, Chan HK (2015) Electrostatics in pharmaceutical solids. Chem Eng Sci 125:225–237. doi: https://doi.org/10.1016/j.ces.2014.05.037

    Article  Google Scholar 

  23. Cartwright JJ, Robertson J, D’Haene D, et al (2013) Twin screw wet granulation: Loss in weight feeding of a poorly flowing active pharmaceutical ingredient. Powder Technol 238:116–121. doi: https://doi.org/10.1016/j.powtec.2012.04.034

    Article  Google Scholar 

  24. Engisch WE, Muzzio FJ (2014) Loss-in-weight feeding trials case study: Pharmaceutical formulation. J Pharm Innov 10:56–75. doi: https://doi.org/10.1007/s12247-014-9206-1

    Article  Google Scholar 

  25. Wang Y, Li T, Muzzio FJ, Glasser BJ (2017) Predicting feeder performance based on material flow properties. Powder Technol 308:135–148. doi: https://doi.org/10.1016/j.powtec.2016.12.010

    Article  Google Scholar 

  26. Søgaard SV, Olesen NE, Hirschberg C, et al (2017) An experimental evaluation of powder flow predictions in small-scale process equipment based on Jenike’s hopper design methodology. Powder Technol 321:523–532. doi: https://doi.org/10.1016/j.powtec.2017.08.006

    Article  Google Scholar 

  27. Polizzi MA, Franchville J, Hilden JL (2016) Assessment and predictive modeling of pharmaceutical powder flow behavior in small-scale hoppers. Powder Technol 294:30–42. doi: https://doi.org/10.1016/j.powtec.2016.02.011

    Article  Google Scholar 

  28. Santos B, Carmo F, Schlindwein W, et al (2018) Pharmaceutical excipients properties and screw feeder performance in continuous processing lines: a Quality by Design (QbD) approach. Drug Dev Ind Pharm 44:2089–2097. doi: https://doi.org/10.1080/03639045.2018.1513024

    Article  Google Scholar 

  29. Ketterhagen WR, Curtis JS, Wassgren CR, Hancock BC (2009) Predicting the flow mode from hoppers using the discrete element method. Powder Technol 195:1–10. doi: https://doi.org/10.1016/j.powtec.2009.05.002

    Article  Google Scholar 

  30. Schulze D (2016) Storage and discharge of bulk solids. In: Merkus H., Meesters G. (eds) Production, handling and characterization of particulate materials, Particle Technology Series, vol 25. Springer, Cham, pp 425–478

    Chapter  Google Scholar 

  31. Simonaho SP, Ketolainen J, Ervasti T, et al (2016) Continuous manufacturing of tablets with PROMIS-line - Introduction and case studies from continuous feeding, blending and tableting. Eur J Pharm Sci 90:38–46. doi: https://doi.org/10.1016/j.ejps.2016.02.006

    Article  Google Scholar 

  32. Blackshields CA, Crean AM (2018) Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review. Pharm Dev Technol 23:554–560. doi: https://doi.org/10.1080/10837450.2017.1339197

    Article  Google Scholar 

  33. Ervasti T, Simonaho SP, Ketolainen J, et al (2015) Continuous manufacturing of extended release tablets via powder mixing and direct compression. Int J Pharm 495:290–301. doi: https://doi.org/10.1016/j.ijpharm.2015.08.077

    Article  Google Scholar 

  34. Pu Y, Mazumder M, Cooney C (2009) Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J Pharm Sci 98:2412–2421. doi: https://doi.org/10.1002/jps.21595

    Article  Google Scholar 

  35. Beretta M, Hörmann TR, Hainz P, et al (2020) Investigation into powder tribo-charging of pharmaceuticals. Part I: Process-induced charge via twin-screw feeding. Int J Pharm 591:120014. doi: https://doi.org/10.1016/j.ijpharm.2020.120014

  36. Glor M (2003) Ignition hazard due to static electricity in particulate processes. Powder Technol 135–136:223–233. doi: https://doi.org/10.1016/j.powtec.2003.08.017

    Article  Google Scholar 

  37. Allenspach C, Timmins P, Lumay G, et al (2021) Loss-in-weight feeding, powder flow and electrostatic evaluation for direct compression hydroxypropyl methylcellulose (HPMC) to support continuous manufacturing. Int J Pharm 596:120259. doi: https://doi.org/10.1016/j.ijpharm.2021.120259

    Article  Google Scholar 

  38. Stauffer F, Vanhoorne V, Pilcer G, et al (2019) Managing active pharmaceutical ingredient raw material variability during twin-screw blend feeding. Eur J Pharm Biopharm 135:49–60. doi: https://doi.org/10.1016/j.ejpb.2018.12.012

    Article  Google Scholar 

  39. Engers DA, Fricke MN, Storey RP, et al (2006) Triboelectrification of pharmaceutically relevant powders during low-shear tumble blending. J Electrostat 64:826–835. doi: https://doi.org/10.1016/j.elstat.2006.02.003

    Article  Google Scholar 

  40. Karner S, Urbanetz NA (2012) Arising of electrostatic charge in the mixing process and its influencing factors. Powder Technol 226:261–268. doi: https://doi.org/10.1016/j.powtec.2012.04.062

    Article  Google Scholar 

  41. Naik S, Mukherjee R, Chaudhuri B (2016) Triboelectrification: A review of experimental and mechanistic modeling approaches with a special focus on pharmaceutical powders. Int J Pharm 510:375–385. doi: https://doi.org/10.1016/j.ijpharm.2016.06.031

    Article  Google Scholar 

  42. Sarkar S, Mukherjee R, Chaudhuri B (2017) On the role of forces governing particulate interactions in pharmaceutical systems: A review. Int J Pharm 526:516–537. doi: https://doi.org/10.1016/j.ijpharm.2017.05.003

    Article  Google Scholar 

  43. Wollowitz S (2010) Managing high-potency active pharmaceutical ingredients-A drug sponsor’s guide. Drug Dev Res 71:420–428. doi: https://doi.org/10.1002/ddr.20385

    Article  Google Scholar 

  44. Besenhard MO, Fathollahi S, Siegmann E, et al (2017) Micro-feeding and dosing of powders via a small-scale powder pump. Int J Pharm 519:314–322. doi: https://doi.org/10.1016/j.ijpharm.2016.12.029

    Article  Google Scholar 

  45. Fathollahi S, Sacher S, Escotet-Espinoza MS, et al (2020) Performance evaluation of a high-precision low-dose powder feeder. AAPS PharmSciTech 21:301. doi: https://doi.org/10.1208/s12249-020-01835-5

    Article  Google Scholar 

  46. Sacher S, Heindl N, Afonso Urich JA, et al (2020) A solution for low-dose feeding in continuous pharmaceutical processes. Int J Pharm 591:119969. doi: https://doi.org/10.1016/j.ijpharm.2020.119969

    Article  Google Scholar 

  47. Besenhard MO, Karkala SK, Faulhammer E, et al (2016) Continuous feeding of low-dose APIs via periodic micro dosing. Int J Pharm 509:123–134. doi: https://doi.org/10.1016/j.ijpharm.2016.05.033

    Article  Google Scholar 

  48. Vanarase AU, Osorio JG, Muzzio FJ (2013) Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders. Powder Technol 246:63–72. doi: https://doi.org/10.1016/j.powtec.2013.05.002

    Article  Google Scholar 

  49. Van Snick B, Grymonpré W, Dhondt J, et al (2018b) Impact of blend properties on die filling during tableting. Int J Pharm 549:476–488. doi: https://doi.org/10.1016/j.ijpharm.2018.08.015

    Article  Google Scholar 

  50. Willecke N, Szepes A, Wunderlich M, et al (2017) Identifying overarching excipient properties towards an in-depth understanding of process and product performance for continuous twin-screw wet granulation. Int J Pharm 522:234–247. doi: https://doi.org/10.1016/j.ijpharm.2017.02.028

    Article  Google Scholar 

  51. Hlinak AJ, Kuriyan K, Morris KR, et al (2006) Understanding critical material properties for solid dosage form design. J Pharm Innov 1:12–17. doi: https://doi.org/10.1007/BF02784876

    Article  Google Scholar 

  52. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. doi: https://doi.org/10.1038/nbt0308-303

    Article  Google Scholar 

  53. Wang Y, O’Connor T, Li T, et al (2019) Development and applications of a material library for pharmaceutical continuous manufacturing of solid dosage forms. Int J Pharm 569:118551. doi: https://doi.org/10.1016/j.ijpharm.2019.118551

    Article  Google Scholar 

  54. Bhalode P, Ierapetritou M (2020) Discrete element modeling for continuous powder feeding operation: Calibration and system analysis. Int J Pharm 585:119427. doi: https://doi.org/10.1016/j.ijpharm.2020.119427

    Article  Google Scholar 

  55. Hou QF, Dong KJ, Yu AB (2014) DEM study of the flow of cohesive particles in a screw feeder. Powder Technol 256:529–539. doi: https://doi.org/10.1016/j.powtec.2014.01.062

    Article  Google Scholar 

  56. López A, Vivacqua V, Hammond R, Ghadiri M (2020) Analysis of screw feeding of faceted particles by discrete element method. Powder Technol 367:474–486. doi: https://doi.org/10.1016/j.powtec.2020.03.064

    Article  Google Scholar 

  57. Weinekötter R, Gericke H (2000) Mixing of Solids. Springer Netherlands, pp 118–124

    Google Scholar 

  58. Pernenkil L, Cooney CL (2006) A review on the continuous blending of powders. Chem Eng Sci 61:720–742. doi: https://doi.org/10.1016/j.ces.2005.06.016

    Article  Google Scholar 

  59. Vanarase AU, Muzzio FJ (2011) Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technol 208:26–36. doi: https://doi.org/10.1016/j.powtec.2010.11.038

    Article  Google Scholar 

  60. U.S. Food and Drug Administration (2019) Quality considerations for continuous manufacturing guidance for industry. Center for Drug Evaluation and Research.

    Google Scholar 

  61. Pedersen T, Karttunen AP, Korhonen O, et al (2021) Determination of residence time distribution in a continuous powder mixing process with supervised and unsupervised modeling of in-line near infrared (NIR) spectroscopic data. J Pharm Sci 110:1259–1269. doi: https://doi.org/10.1016/j.xphs.2020.10.067

    Article  Google Scholar 

  62. Van Snick B, Kumar A, Verstraeten M, et al (2019) Impact of material properties and process variables on the residence time distribution in twin screw feeding equipment. Int J Pharm 556:200–216. doi: https://doi.org/10.1016/j.ijpharm.2018.11.076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abina M. Crean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerins, B.M., Crean, A.M. (2022). Continuous Powder Feeding: Equipment Design and Material Considerations. In: Fytopoulos, A., Ramachandran, R., Pardalos, P.M. (eds) Optimization of Pharmaceutical Processes. Springer Optimization and Its Applications, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-030-90924-6_7

Download citation

Publish with us

Policies and ethics