Skip to main content

Abstract

Finite element (FE) biomechanical studies for adolescent idiopathic scoliosis (AIS) treatments will greatly benefit from utilizing true-scale, patient-specific anatomy that accurately characterizes all tissue properties. This study presents a method to automatically generate patient-specific, FE meshes containing volumetric soft tissues, such as ligaments and cartilage, that are inconspicuous in computed tomography (CT) imaging of AIS patients. Convolutional neural network (CNN) derived vertebrae segmentations, obtained from CT scans, provide a foundation for subsequent elastic deformations of ligamentoskeletal, computer-aided designed (CAD) surface meshes, to ascertain patient-specific anatomy, including soft tissue structures. Patient-specific, ligamentoskeletal meshes are then tetrahedralized for use in FE studies. Dice similarity coefficients of 90% and submillimeter Hausdorff distances demonstrate vertebrae and intervertebral disc fitting accuracy of the automatic methodology. In severe AIS cases, when CNN segmentations fail due to overfitting, a semi-automatic step augments the automatic method. The generated FE meshes can provide the basis for biomechanical simulations seeking to correct AIS through bracing, minimally invasive operations, or patient-specific, surgical procedures, like posterior spinal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Chapter 10: Variational tetrahedral meshing. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005 (2005)

    Google Scholar 

  2. Audette, M.A., et al.: Towards a deformable multi-surface approach to ligamentous spine models for predictive simulation-based scoliosis surgery planning. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI 2018. LNCS, vol. 11397, pp. 90–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13736-6_8

    Chapter  Google Scholar 

  3. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks: particle-based shape correspondence and visualization software. In: Zheng, G., Li, S., Szekely, G. (eds.) Statistical Shape and Deformation Analysis, vol. 2017, pp. 257–298. Academic Press, MA (2017). Ch. 10

    Google Scholar 

  4. Cheung, Z. B., Cho, S.: Idiopathic scoliosis in children and adolescents: emerging techniques in surgical treatment. World Neurosurg. 130, e737–e742 (2019)

    Google Scholar 

  5. Damopoulos, D., Schmid, J.: Segmentation of the proximal femur in radial MR scans using a random forest classifier and deformable model registration. Int. J. Comput. Assist. Radiol. Surg. 14(3), 545–561 (2019)

    Article  Google Scholar 

  6. Guan, T., Zhang, Y., et al.: Determination of three-dimensional corrective force in adolescent idiopathic scoliosis and biomechanical finite element analysis. Front. Bioeng. Biotechnol. 8, 963 (2020)

    Article  Google Scholar 

  7. Guerroumi, N., Playout, C., et al.: Automatic segmentation of the scoliotic spine from MR images. In: International Symposium on Biomedical Imaging, vol. 2019, pp. 480–484 (2019)

    Google Scholar 

  8. Illés, T., Somoskeöy, S.: The EOSTM imaging system and its uses in daily orthopaedic practice. Int. Orthop. 36, 1325–1331 (2012)

    Article  Google Scholar 

  9. Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Model-based segmentation of vertebral bodies from mr images with 3D CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 433–441. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_50

    Chapter  Google Scholar 

  10. La Barbera, L., Aubin, C.E.: In silico patient-specific optimization of correction strategies for thoracic adolescent idiopathic scoliosis. Clin. Biomech. 81, 105200 (2021)

    Article  Google Scholar 

  11. Little, J.P., Adam, C.: Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: predicted vs clinical correction for a series of six patients. Int. J. Numer. Methods Biomed. Eng. 27(3), 347–356 (2011)

    Article  Google Scholar 

  12. Lenke, L.G., Blanke, K.: Adolescent idiopathic scoliosis. A new classification to determine extent of spinal arthrodesis. J. Bone Joint Surg. 83(8), 1169–1181 (2001)

    Article  Google Scholar 

  13. Mohamed, M., Trivedi, J., Davidson, N., Munigangaiah, S.: Adolescent idiopathic scoliosis: a review of current concepts. Orthop. Trauma 34(6), 338–345 (2020)

    Article  Google Scholar 

  14. Payer, C., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  15. Rajaee, M.A., Arjmand, N., Shirazi-Adl, A.: A novel coupled musculoskeletal FE model of the spine – critical evaluation of trunk models. J. Biomech. 119, 110331 (2021)

    Article  Google Scholar 

  16. Wang, W., Baran, G.R., Cahill, P.J.: The Use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deformity 2(1), 10–27 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Tapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tapp, A. et al. (2021). Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. DCL PPML LL-COVID19 CLIP 2021 2021 2021 2021. Lecture Notes in Computer Science(), vol 12969. Springer, Cham. https://doi.org/10.1007/978-3-030-90874-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90874-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90873-7

  • Online ISBN: 978-3-030-90874-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics