Skip to main content

Model-Free Reinforcement Learning for Lexicographic Omega-Regular Objectives

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Abstract

We study the problem of finding optimal strategies in Markov decision processes with lexicographic \(\omega \)-regular objectives, which are ordered collections of ordinary \(\omega \)-regular objectives. The goal is to compute strategies that maximise the probability of satisfaction of the first \(\omega \)-regular objective; subject to that, the strategy should also maximise the probability of satisfaction of the second \(\omega \)-regular objective; then the third and so forth. For instance, one may want to guarantee critical requirements first, functional ones second and only then focus on the non-functional ones. We show how to harness the classic off-the-shelf model-free reinforcement learning techniques to solve this problem and evaluate their performance on four case studies.

This work was supported by the Engineering and Physical Sciences Research Council through grant EP/P020909/1 and by the National Science Foundation through grant 2009022. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 101032464 (SyGaST), 864075 (CAESAR), and 956123 (FOCETA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://prismmodelchecker.org/casestudies/virus.php.

  2. 2.

    http://prismmodelchecker.org/casestudies/human-uav.php.

  3. 3.

    https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg.

References

  1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University (1998)

    Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Bozkurt, A.K., Wang, Y., Pajic, M.: Model-free learning of safe yet effective controllers. arXiv preprint arXiv:2103.14600 (2021)

  4. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from linear temporal logic specifications using model-free reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10349–10355 (2020). https://doi.org/10.1109/ICRA40945.2020.9196796

  5. Chatterjee, K.: Markov decision processes with multiple long-run average objectives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science, pp. 473–484. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_26

    Chapter  Google Scholar 

  7. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 50–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Feng, L., Wiltsche, C., Humphrey, L.R., Topcu, U.: Controller synthesis for autonomous systems interacting with human operators. In: Bayen, A.M., Branicky, M.S. (eds.) Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, ICCPS 2015, Seattle, WA, USA, 14–16, April, 2015, pp. 70–79. ACM (2015). https://doi.org/10.1145/2735960.2735973

  9. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 112–127. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with temporal logic constraints. In: Robotics: Science and Systems, July 2014

    Google Scholar 

  11. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_27

    Chapter  Google Scholar 

  12. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-for-mdps automata for probabilistic analysis and reinforcement learning. In: Tools and Algorithms for the Construction and Analysis of Systems (2020)

    Google Scholar 

  13. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faithful and effective reward schemes for model-free reinforcement learning of omega-regular objectives. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_6

    Chapter  Google Scholar 

  14. Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement learning. CoRR abs/1801.08099 (2018). http://arxiv.org/abs/1801.08099

  15. Hasanbeig, M., Abate, A., Kroening, D.: Certified reinforcement learning with logic guidance. arXiv:1902.00778 (2019)

  16. Kretínský, J., Pérez, G.A., Raskin, J.: Learning-based mean-payoff optimization in an unknown MDP under omega-regular constraints. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018, 4–7, September, 2018, Beijing, China, vol. 118, pp. 8:1–8:18. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.8

  17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.: Probabilistic mobile ambients. Theoretical Computer Science 410(12–13), 1272–1303 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  20. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (1994)

    Book  Google Scholar 

  21. Sadigh, D., Kim, E., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based approach to control synthesis of Markov decision processes for linear temporal logic specifications. In: CDC, pp. 1091–1096, December 2014

    Google Scholar 

  22. Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: International Conference on Machine Learning, ICM, pp. 881–888 (2006)

    Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  24. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D. (2021). Model-Free Reinforcement Learning for Lexicographic Omega-Regular Objectives. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics