Skip to main content

The Theory of Mathematical Working Spaces—Theoretical Characteristics

  • Chapter
  • First Online:
Mathematical Work in Educational Context

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 18))

Abstract

The theory of Mathematical Working Spaces (MWS) is introduced in this chapter. Presenting epistemological and cognitive aspects, we see how the theory of MWS aims to provide tools—theoretical and methodological—for the specific study of mathematical work in which students and teachers effectively engage during mathematics lessons. Some of the main key constructs of the theory are introduced: the notion of mathematical work in relation to Mathematical Working Spaces; the semiotic, instrumental and discursive geneses associated with MWS diagrams; the different levels of MWS associated with reference, suitable and personal work, etc. We then demonstrate how these different tools enable the description, characterization and formation of mathematical work. Finally, emphasis is placed on the originality of this theory in the field of mathematics education theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This topic is further developed in Chap. 7 (Kuzniak, Montoya and Vivier).

  2. 2.

    The material component of mathematical artifacts alone is often not enough to identify them, and it is important to know their symbolic valence: Indeed, the artifact is often recognized through observation of the technique implemented, Chap. 9 (Lagrange & Richard).

  3. 3.

    For a discussion on the different types of discourses in the theory of MWS, see Pizarro (2018) who introduces three kind of discourse in relation to each genesis.

  4. 4.

    A cognitive unit encompasses the different elements of knowledge about the mathematical entity.

  5. 5.

    We can see here that the point is part of the circle in its cognitive unit, whereas from a mathematical point of view, it is not.

  6. 6.

    This point is discussed in further detail in Chap. 7 (Kuzniak, Montoya-Delgadillo & Vivier).

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematics Learning, 7, 245–274.

    Article  Google Scholar 

  • Artigue, M. (2016). Mathematical working spaces through networking lens. ZDM Mathematics Education, 48(6), 935–939. https://doi.org/10.1007/s11858-016-0810-z

    Article  Google Scholar 

  • Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2/3), 189–206. https://doi.org/10.1007/s10649-010-9280-3

    Article  Google Scholar 

  • Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. Castro (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PME–NA) (pp. 2–15). PME.

    Google Scholar 

  • Bikner-Ahsbahs, A. (2017). Introduction to the papers of TWG17: Theoretical perspectives and approaches in mathematics education research. In T. Dooley, & G. Gueudet (Eds.), Proceedings of the 10th CERME (pp 2683–2691). Dublin, Ireland.

    Google Scholar 

  • Brousseau, G. (2002). Theory of didactical situations in mathematics. Dordrecht: Springer.

    Google Scholar 

  • Chevallard, Y. (1992). Concepts fondamentaux de la didactique : Perspectives apportées par une approche anthropologique. Recherches En Didactique Des Mathématiques, 12(1), 73–112.

    Google Scholar 

  • Coutat, S., & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés mathématiques. Annales De Didactique Et De Sciences Cognitives, 16, 97–126.

    Google Scholar 

  • Dupuis, C., & Rousset-Bert, S. (1996). Arbres et tableaux de probabilités: Analyse en terme de registre de représentation. Repères-Irem, 22, 51–72.

    Google Scholar 

  • Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales De Didactique Et De Sciences Cognitives, 10, 5–53.

    Google Scholar 

  • Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413–435.

    Article  Google Scholar 

  • Fénichel, M., & Taveau, C. (2009). Enseigner les mathématiques au cycle 3. Le cercle sans tourner en rond. DVD, CRDP Créteil.

    Google Scholar 

  • Gómez-Chacón, I., Kuzniak, A., & Vivier, L. (2016). El rol del profesor desde la perspectiva de los Espacios de Trabajo Matemático. Boletim de Educação Matemática – Bolema, 30(54), 1–22. https://doi.org/10.1590/1980-4415v30n54a01.

  • Guzman, I., & Kuzniak, A. (2006). Paradigmes géométriques et géométrie enseignée au Chili et en France. Irem Paris-Diderot.

    Google Scholar 

  • Granger, G.G. (1963). Essai d’une philosophie du style. Paris: Armand Colin, rééd. Paris: Odile Jacob 1987.

    Google Scholar 

  • Houdement, C., & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres. Educational Studies in Mathematics, 40(3), 283–312. https://doi.org/10.1023/A:1003851228212

    Article  Google Scholar 

  • Kidron, I. (2016). Epistemology and networking theories. Educational Studies in Mathematics, 91(2), 149–163. https://doi.org/10.1007/s10649-015-9666-3

    Article  Google Scholar 

  • Kuhn, T. S. (1966). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Kuzniak, A. (2019). La théorie des Espaces de Travail Mathématique – Développement et perspectives. In L. Vivier, & E. Montoya-Delgadillo (Eds.), Sexto Simposio sobre el Trabajo Matemático (pp. 21–60). Valparaíso: Pontificia Universidad Católica de Valparaíso.

    Google Scholar 

  • Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical Working Spaces in schooling: An introduction. ZDM Mathematics Education, 48(6), 721–737. https://doi.org/10.1007/s11858-016-0812-x

    Article  Google Scholar 

  • Kuzniak, A., Nechache, A., & Drouhard, J.-P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48(6), 861–874. https://doi.org/10.1007/s11858-016-0773-0

    Article  Google Scholar 

  • Kuzniak, A., & Nechache, A. (2016). Tâches emblématiques dans l’étude des ETM idoines et personnels: Existence et usages. Quinto Simposio Espacio de Trabajo Matemático - ETM5. Florina, Grecia.

    Google Scholar 

  • Kuzniak, A., & Nechache, A. (2021). Personal geometrical work of pre-service teachers: A case study based on the theory of Mathematical Working Spaces. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-020-10011-2

    Article  Google Scholar 

  • Kuzniak, A., & Richard, P. R. (2014). Mathematical working spaces. Viewpoints and perspectives. Relime, Revista Latinoamerica de investigacion en matematica educative, 17(4), 5–40. https://doi.org/10.12802/relime.13.1741a.

  • Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lebot, D. (2011). Mettre en place le concept d’angle et de sa grandeur à partir de situations ancrées dans l’espace vécu: Quelles influences sur les ETG? Master de didactique des mathématiques. Irem, Université Paris-Diderot.

    Google Scholar 

  • Montoya, E., & Vivier, L. (2014). Les changements de domaine dans le cadre des Espaces de Travail Mathématique. Annales De Didactique Et De Sciences Cognitives, 19, 73–101.

    Google Scholar 

  • Nechache, A. (2017). La catégorisation des tâches et du travailleur-sujet : Un outil méthodologique pour l’étude du travail mathématique dans le domaine des probabilités. Annales deDidactique Et De Sciences Cognitives, 19, 67–90.

    Google Scholar 

  • Peirce, C. S. (1931). Collected Papers, vols. 1–6. Cambridge: Harvard University Press. Collected papers.

    Google Scholar 

  • Pizarro, A. (2018). El trabajo geométrico en clases de séptimo básico en Chile: Un estudio de casos sobre la enseñanza de los triángulos. Thèse de l’Université de Paris. Paris: Université de Paris.

    Google Scholar 

  • Radford, L. (2017). On inferentialism. Mathematics Education Research Journal, 29(4), 493–508. https://doi.org/10.1007/s13394-017-0225-3

    Article  Google Scholar 

  • Richard, P. R., Venant, F., & Gagnon, M. (2019). Issues and challenges about instrumental proof. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof technology in mathematics research and teaching. Cham: Springer International Publisher.

    Google Scholar 

  • Schoenfeld, A. (1985). Mathematical problem solving. New York: Academic Press.

    Google Scholar 

  • Sierpinska, A. (2004). Research in mathematics education through a keyhole: Task problematization. For the Learning of Mathematics, 24(2), 7–15.

    Google Scholar 

  • Thurston, W. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Article  Google Scholar 

  • Vandebrouck, F. (Ed.). (2013). Mathematics classrooms students’ activities and teachers’ practices. Rotterdam: Sense Publishers.

    Google Scholar 

  • Vivier, L. (2020). Portée et usage du travail mathématique dans le cadre de la théorie des ETM. In M. Flores, A. Kuzniak, A. Nechache, & L. Vivier (Eds.), Regards croisés sur le travail mathématique en contexte éducatif. Cahiers du LDAR 21 (pp. 55–70). Irem, Université de Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Kuzniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuzniak, A. (2022). The Theory of Mathematical Working Spaces—Theoretical Characteristics. In: Kuzniak, A., Montoya-Delgadillo, E., Richard, P.R. (eds) Mathematical Work in Educational Context. Mathematics Education in the Digital Era, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-90850-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90850-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90849-2

  • Online ISBN: 978-3-030-90850-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics