Skip to main content

Tri-simplicial Contradiction: The “Pascalian 3D Simplex” for the Oppositional Tri-segment

  • Conference paper
  • First Online:
The Exoteric Square of Opposition

Part of the book series: Studies in Universal Logic ((SUL))

  • 271 Accesses

Abstract

In this paper, we deal with the theory of the “oppositional poly-simplexes”, producing the first complete analysis of the simplest of them: the oppositional tri-segment, the three-valued counterpart of the oppositional-geometrical red contradiction segment. The concept of poly-simplex has been proposed by us in 2009 (Moretti A, The geometry of logical opposition. PhD thesis, University of Neuchâtel, Switzerland, 2009), for generalizing the theory of the “oppositional bi-simplexes”, which is the heart of our and Angot-Pellissier’s “oppositional geometry” (Angot-Pellissier R, 2-opposition and the topological hexagon. In: [30], 2012; Moretti A, Geometry for modalities? Yes: through n-opposition theory. In: [27], 2004; Pellissier R, Logica Universalis 2:235–263, 2008). The latter is meant to be the general theory of structures like the logical hexagon (which is a bi-triangle). The poly-simplexes are the most straightforward way to turn any “geometry of oppositions” consequently many-valued, which is otherwise still a desideratum of the field. We start by recalling the general theoretical context: how the field was opened, around 2002, by a reflection on the foundations of paraconsistent negation (Béziau J-Y, Logical Investigations 10:218–233, 2003) and how from that has progressively emerged “oppositional geometry”, the theory of the “oppositional structures”, enabling to model the “oppositional complexity” of “oppositional phenomena”. After recalling how emerged the idea of poly-simplex, we explain why time seems to have now come to explore them for real, since we have two powerful new tools: (1) Angot-Pellissier’s sheaf-theoretical technique (Angot-Pellissier R, Many-valued logical hexagons in a 3-oppositional trisimplex. In: this volume, 2022; Angot-Pellissier R, Many-valued logical hexagons in a 3-oppositional quadrisimplex. Draft, January 2014) for producing the many-valued oppositional vertices of the poly-simplexes (and evaluating their edges) (2) and a generalization of “Pascal’s triangle”, turned here into a more general “Pascalian ND simplex”, whose suited “horizontal (N-1)D sections” provide a much needed and very powerful numerical-geometrical “roadmap”, for constructing and exploring any arbitrary oppositional poly-simplex (Sect. 1). After unfolding successfully the structure of the tri-segment (Sects. 2 and 3), we make an unexpected detour (Sect. 4) by Smessaert and Demey’s “logical geometry” (Smessaert H. and Demey L., Journal of Logic, Language and Information 23:527–565, 2014), composed of two “twin geometries”: one for “opposition” and another for “implication”. We thus develop the “implication geometry” of the tri-segment and so discover that what these authors take for a “bricolage” (called by them “Aristotelian geometry”) is in fact, when considered as general “Aristotelian combination” in oppositional spaces higher than the bi-simplicial one (the one in which they remain tacitly but constantly), the mathematically optimal way, bottom-up, for exploring methodically the poly-simplicial space. We end (Sect. 5) by considering applications of this tri-segment resulted from such a tri-simplicial diffraction of the bi-simplicial contradiction segment (which adds to it paracomplete, i.e., intuitionist, and paraconsistent, i.e., co-intuitionist, features) in many-valued logics, paraconsistent logics, quantum logic, dialectics, and psychoanalysis. In particular, we show that the tri-segment, by its paracomplete substructure, models, better than did anything before it, “Lacan’s square”.

To Jean-Yves, Régis, and Hans

Three structuralist deep minds

Who changed forever my

Creative perception

Of mathematics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angot-Pellissier, R.: 2-opposition and the topological hexagon (2012). In: [30]

    Google Scholar 

  2. Angot-Pellissier, R.: The Relation Between Logic, Set Theory and Topos Theory as It Is Used by Alain Badiou (2015). In: [40]

    Google Scholar 

  3. Angot-Pellissier, R.: Many-valued logical hexagons in a 3-oppositional trisimplex (2022). In: this volume

    Google Scholar 

  4. Angot-Pellissier, R.: Many-valued logical hexagons in a 3-oppositional quadrisimplex. Draft (January 2014)

    Google Scholar 

  5. Aristotle: Metaphysics (translated by H. Lawson-Tancredi). Penguin, London (1998)

    Google Scholar 

  6. Aristotle: Categories and De Interpretatione (Translated with notes by J.L. Ackrill). Clarendon Aristotle Series, Oxford (1963)

    Google Scholar 

  7. Awodey, S.: Structure in mathematics and logic: a Categorical Perspective. Philosophia Mathematica, 4 (3), 209–237 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Awodey, S.: An Answer to Hellman’s question: “Does category theory provide a framework for mathematical structuralism?”. Philosophia Mathematica, 11, 2 (2003)

    Google Scholar 

  9. Awodey, S.: Structuralism, Invariance and Univalence. Philosophia Mathematica, 22 (1), 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Badiou, A.: Conditions. Seuil, Paris (1992)

    Google Scholar 

  11. Badiou, A.: Philosophie et mathématique (1991). In: [10]

    Google Scholar 

  12. Badiou, A.: Sujet et infini (1992). In: [10]

    Google Scholar 

  13. Badiou, A.: Éloge des mathématiques. Flammarion, Paris (2015)

    MATH  Google Scholar 

  14. Badiou, A. and Cassin, B.: Il n’y a pas de rapport sexuel. Deux leçons sur “L’Étourdit” de Lacan. Fayard, Paris (2010)

    Google Scholar 

  15. Banchoff, T.F.: Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. Scientific American Library Series (1990)

    Google Scholar 

  16. Barot, E.: La dualité de Lautman contre la négativité de Hegel, et le paradoxe de leurs formalisations. Contribution à une enquête sur les formalisations de la dialectique. Philosophiques, 37/1, 111–148 (Spring 2010)

    Google Scholar 

  17. Barrett, J.A.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)

    Google Scholar 

  18. Barrett, J.A.: Everett’s Relative-State Formulation of Quantum Mechanics. Stanford Encyclopedia of Philosophy (2018) (1998)

    Google Scholar 

  19. Becker Arenhart J. and Krause D.: Contradiction, Quantum Mechanics and the Square of Opposition. Logique & Analyse, Vol.59, No.235 (2016)

    Google Scholar 

  20. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic. Semantics, Algebras and Derivation Systems. Cambridge UP, Cambridge (2008)

    MATH  Google Scholar 

  21. Berto, F.: How to Sell a Contradiction. The Logic and Metaphysics of Inconsistency. College Publications, London (2007)

    MATH  Google Scholar 

  22. Berto, F. and Bottai, L.: Che cos’è una contraddizione. Carocci, Roma (2015)

    Google Scholar 

  23. Béziau, J.-Y.: S5 is paraconsistent logic and so is first-order classical logic. Logical Investigations, 9, 301–309 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Béziau, J.-Y.: New light on the square of oppositions and its nameless corner. Logical Investigations, 10, 218–233 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Béziau, J.-Y.: Paraconsistent logic from a modal viewpoint. Journal of Applied Logic 3, 7–14 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Béziau, J.-Y.: Paraconsistent logic! (A Reply to Slater). Sorites, 17 (2006)

    Google Scholar 

  27. Béziau J.-Y., Costa-Leite A. and Facchini A. (eds.): Aspects of Universal Logic, N.17 of Travaux de logique, University of Neuchâtel (December 2004)

    Google Scholar 

  28. Béziau, J.-Y. and Gan-Krzywoszynska, K. (eds.): New Dimensions of the Square of Oppositions. Philosophia Verlag, Münich, (2014)

    Google Scholar 

  29. Béziau, J.-Y. and Jacquette, D. (eds.): Around and Beyond the Square of Opposition. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  30. Béziau J.-Y. and Payette G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012)

    MATH  Google Scholar 

  31. Bhaskar, R.: Dialectic. The pulse of freedom. Routledge, London and New York, (2008) (1993)

    Google Scholar 

  32. Birkhoff, G. and von Neumann, J.: The Logic of Quantum Mechanics. Annals of Mathematics, Vol. 37, No. 4 (October 1936)

    Google Scholar 

  33. Blanché, R.: Structures intellectuelles. Essai sur l’organisation systématique des concepts. Vrin, Paris (2004) (1966)

    Google Scholar 

  34. Blanché, R.: Raison et discours. Défense de la logique reflexive. Vrin, Paris, (2004) (1967)

    MATH  Google Scholar 

  35. Bobenrieth, A.: Inconsistencias ¿por qué no? Un studio filosófico sobre la lógica paraconsistente. Colcultura, Bogota (1996)

    Google Scholar 

  36. Bolzano, B.: Les paradoxes de l’infini (edited by H. Sinaceur). Seuil, Paris (1993)

    MATH  Google Scholar 

  37. Bolzano, B.: Philosophische Texte (edited by U. Neemann). Reclam, Stuttgart (1984)

    Google Scholar 

  38. Bouchon-Meunier, B.: La logique floue. PUF, Paris (2007) (1993)

    MATH  Google Scholar 

  39. Brunschwig, J.: La proposition particulière et les preuves de non-concluance chez Aristote. Cahiers pour l’Analyse, 10, 3–26 (1969)

    Google Scholar 

  40. Buchsbaum A. and Koslow A. (eds.): The Road to Universal Logic, Vol. II, Birkhäuser, Basel (2015)

    MATH  Google Scholar 

  41. Cavaliere, F.: Fuzzy syllogisms, numerical square, triangle of contraries, inter-bivalence (2012). In: [29]

    Google Scholar 

  42. Chatti S. and Ben Aziza H. (eds.): Le carré et ses extensions: approaches théoriques, pratiques et historiques. Publications de la faculté des sciences humaines de Tunis, Université de Tunis (2015)

    Google Scholar 

  43. Chatti, S. and Schang, F.: The Cube, the Square and the Problem of Existential Import. History and Philosophy of Logic, 34, 2 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Counet, J.-M.: La formalisation de la dialectique de Hegel. Bilan de quelques tentatives. Logique & Analyse, 218, 205–227 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Coxeter, H.S.M.: Regular Polytopes (3rd edition). Dover, Mineola and New York (2020) (1963)

    MATH  Google Scholar 

  46. da Costa, N.C.A.: Logiques classiques et non-classiques. Essai sur les fondements de la logique (translated by J.-Y. Béziau). Masson, Paris (1997)

    Google Scholar 

  47. Darmon, M.: Essais sur la topologie lacanienne (nouvelle edition revue et augmentée). Éditions de l’Association freudienne, Paris (2004) (1990)

    Google Scholar 

  48. Davey, B.A. and Priestley, H.A.: Introduction to Lattices and Order (2nd edition). Cambridge University Press, Cambridge (2010) (1990)

    MATH  Google Scholar 

  49. Demey, L.: Metalogic, Metalanguage and Logical Geometry. Logique & Analyse, 62, 248, 453–578 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Demey, L. and Smessaert, H.: Aristotelian and Duality Relations Beyond the Square of Oppositions. In: Chapman P., Stapleton G., Moktefi A. Perez-Kriz S. and Bellucci F. (eds.): Diagrammatic Representation and Inference. Lecture Notes in Artificial Intelligence (LNAI), 10871, 640–656 (2018)

    Google Scholar 

  51. Demey, L. and Smessaert, H.: Combinatorial Bitstring Semantics for Arbitrary Logical Fragments. Journal of Philosophical Logic, 47/2, 325–363 (2018)

    MathSciNet  MATH  Google Scholar 

  52. de Ronde, C., Freytes, H. and Domenech, G.: Quantum Mechanics and the Interpretation of the Orthomodular Square of Opposition (2014). In: [28]

    Google Scholar 

  53. Destouches-Février, P.: La structure des theories physiques. PUF, Paris (1951)

    MATH  Google Scholar 

  54. Deutsch, D.: The Fabric of Reality. Penguin Books, London (1997)

    Google Scholar 

  55. Dor, J.: Introduction à la lecture de Lacan – 1. L’inconscient structuré comme un langage. Denoël, Paris (1985)

    Google Scholar 

  56. Dor, J.: Introduction à la lecture de Lacan – 2. La structure du sujet. Denoël, Paris (1992)

    Google Scholar 

  57. Dreyfuss, J.-P., Jadin, J.-M. and Ritter, M.: Écritures de l’inconscient. De la lettre à la topologie. Arcanes, Strasbourg (2001)

    Google Scholar 

  58. Dubarle, D. and Doz, A.: Logique et dialectique. Larousse, Paris (1972)

    Google Scholar 

  59. Dubois, D., Prade, H. and Rico, A.: Structures of Opposition and Comparisons: Boolean and Gradual Cases. Logica Universalis, 14, 1, 115–149 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Engesser K., Gabbay D. and Lehmann D. (eds.): Handbook of Quantum Logic and Quantum Structures: Quantum Logic. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  61. Fierens, C.: Lecture du sinthome. Érès, Toulouse (2018)

    Google Scholar 

  62. Flegg, H.G.: From Geometry to Topology. Dover, Mineola and New York (2001) (1974)

    MATH  Google Scholar 

  63. Freud, S.: Über den Gegensinn der Urworter (1910). In: Freud, S.: Studienausgabe. Bd. IV. Psychologische Schriften, Fischer Verlag, Frankfurt/Main (1989) (1970)

    Google Scholar 

  64. Freud, S.: Die metapsychologische Schriften von 1915. In: Freud, S.: Studienausgabe. Bd.III. Psychologie des Unbewußten, Fischer Verlag, Frankfurt/Main (1989) (1975)

    Google Scholar 

  65. Freud, S.: Abrégé de psychanalyse. PUF, Paris (1998) (1946†)

    Google Scholar 

  66. Freytes, H., de Ronde, C. and Domenech, G.: The Square of Opposition in Orthomodular Logic (2012). In: [29]

    Google Scholar 

  67. Gärdenfors, P.: Conceptual Spaces. The Geometry of Thought. MIT Press, Cambridge MA (2004) (2000)

    Google Scholar 

  68. Girard, J.-Y.: Le champ du signe ou la faillite du réductionnisme (1989). In: [104]

    Google Scholar 

  69. Girard, J.-Y.: La machine de Turing: de la calculabilité à la complexité (1995). In: [140]

    Google Scholar 

  70. Girard, J.-Y.: The Blind Spot. Lectures on Logic. European Mathematical Society, Berlin (2011) (2006)

    MATH  Google Scholar 

  71. Girard, J.-Y.: La logique 2.0. Online draft (26 September 2018)

    Google Scholar 

  72. Girard, J.-Y.: Un tract anti-système. Online draft (27 November 2019)

    Google Scholar 

  73. Grigg, R.: Lacan and Badiou: Logic of the Pas-Tout. Filozofski vestnik, XXVI, 2, 53–65 (2005)

    Google Scholar 

  74. Gurvitch, G.: Dialectique et sociologie. Flammarion, Paris (1977) (1962)

    Google Scholar 

  75. Haack, S.: Deviant Logic, Fuzzy Logic. Beyond the Formalism. The University of Chicago Press, Chicago and London (1996) (1974)

    MATH  Google Scholar 

  76. Heudin, J.C.: Comprendre le deep learning. Une introduction aux réseaux de neurones. Science-e-book, Paris (2019) (2016)

    Google Scholar 

  77. Hösle, V.: I fondamenti dell’aritmetica e della geometria in Platone. Vita & Pensiero, Milano (1994)

    Google Scholar 

  78. Jung, C.G.: Synchronicité et Paracelsica. Albin Michel, Paris (1988)

    Google Scholar 

  79. Lacan, J.: Le séminaire – livre XX. Encore (edited by J.-A. Miller). Seuil, Paris (1999) (1975)

    Google Scholar 

  80. Lautman, A.: Les mathématiques, les idées et le reel physique. Vrin, Paris (2006†)

    MATH  Google Scholar 

  81. Lavendhomme, R.: Lieux du sujet. Psychanalyse et mathématique. Seuil, Paris (2001)

    MATH  Google Scholar 

  82. Lawvere, F.W.: Unity and Identity of Opposites in Calculus and Physics. Applied Categorical Structures, 4, 167–174 (1996)

    MathSciNet  MATH  Google Scholar 

  83. Lawvere, F.W. and Schanuel, S.H.: Conceptual Mathematics. A first introduction to categories. CUP, Cambridge (2002) (1991)

    MATH  Google Scholar 

  84. Laz, J.: Bolzano critique de Kant. Vrin, Paris (1993)

    Google Scholar 

  85. Le Gaufey, G.: Le pastout de Lacan. Consistance logique, conséquences cliniques. EPEL, Paris (2014)

    Google Scholar 

  86. Lupasco, S.: Le principe d’antagonisme et la logique de l’énergie. Le Rocher, Monaco (1987) (1951)

    Google Scholar 

  87. Luzeaux, D., Sallantin, J. and Dartnell, C.: Logical extensions of Aristotle’s square. Logica Universalis, 2 (1), 167–187 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Mandelbrot, B.B.: Fractals and the Rebirth of Experimental Mathematics (1992). In: [109]

    Google Scholar 

  89. Marconi, D. (ed.): La formalizzazione della dialettica. Hegel, Marx e la logica contemporanea. Rosenberg & Sellier, Torino (1979)

    Google Scholar 

  90. Matte Blanco, I.: The Unconscious as Infinite Sets. An Essay in Bi-logic. Karnac, London (1998) (1975)

    Google Scholar 

  91. Megill, N.: Orthomodular Lattices and Beyond. Online slides (2003)

    Google Scholar 

  92. Mélès, B.: Pratique mathématique et lectures de Hegel, de Jean Cavaillès à William Lawvere. Philosophia Scientiae, 16 (1), 153–182 (2012)

    MathSciNet  MATH  Google Scholar 

  93. Moretti, A.: Geometry for Modalities? Yes: Through n-Opposition Theory (2004). In: [27]

    Google Scholar 

  94. Moretti, A.: The Geometry of Logical Opposition. PhD Thesis, University of Neuchâtel, Switzerland (2009)

    Google Scholar 

  95. Moretti, A.: The Geometry of Standard Deontic Logic. Logica Universalis, 3, 1, 19–57 (2009)

    MathSciNet  MATH  Google Scholar 

  96. Moretti, A.: The Critics of Paraconsistency and of Many-Valuedness and the Geometry of Oppositions. Logic and Logical Philosophy, Special Issue on Paraconsistent Logic, Guest Editors: Koji Tanaka, Francesco Berto, Edwin Mares and Francesco Paoli, Vol.19, N.1–2, 63–94 (2010)

    Google Scholar 

  97. Moretti, A.: Why the logical hexagon?. Logica Universalis, 6 (1–2), 69–107 (2012)

    MathSciNet  MATH  Google Scholar 

  98. Moretti, A.: Was Lewis Carroll an Amazing Oppositional Geometer?. History and Philosophy of Logic, 35, IV, 383–409 (2014)

    MathSciNet  MATH  Google Scholar 

  99. Moretti, A.: La science-fiction comme “désajustement onirisé” et ses enjeux philosophiques actuels. In: Albrechts-Desestré, F., Blanquet, E., Gautero, J.-L. and Picholle, E. (eds.): Philosophie, science-fiction?. Éditions du Somnium, Villefranche-sur-mer (2014)

    Google Scholar 

  100. Moretti, A.: Le retour du refoulé: l’hexagone logique qui est derrière le carré sémiotique (2015). In: [42]

    Google Scholar 

  101. Moretti, A.: Arrow-Hexagons (2015). In: [40]

    Google Scholar 

  102. Moretti, A.: Philosophie tragique ou anti-philosophie? La géométrie oppositionnelle et les structures élémentaires de l’idéologie. Revista Trágica: estudos de Filosofia da Imanência, V.12, n.3, 52–90 (2019)

    Google Scholar 

  103. Murinová, P.: Graded Structures of Opposition in Fuzzy Natural Logic. Logica Universalis, 14, 4, 495–522 (2020).

    MathSciNet  MATH  Google Scholar 

  104. Nagel, E., Newman, J.R., Gödel, K. and Girard, J.-Y.: Le théorème de Gödel. Seuil (translated into French by J.B. Scherrer), Paris (1997) (1931, 1958, 1989)

    Google Scholar 

  105. Ollman, B.: Dance of the dialectic. Steps in Marx’s method. University of Illinois Press, Urbana, Chicago and Springfield (2003)

    Google Scholar 

  106. Palau, G.: Introducción filosófica a las lógicas no clásicas. Gedisa, Barcelona (2002)

    Google Scholar 

  107. Parsons, T.: The traditional square of opposition. Stanford Encyclopedia of Philosophy (2017) (1997)

    Google Scholar 

  108. Pavičić M. and Megill N.D.: Is Quantum Logic a Logic? (2008). In: [60]

    Google Scholar 

  109. Peitgen H.-O., Jürgens H. and Saupe D.: Fractals for the Classroom. Part One: Introduction to Fractals and Chaos, Springer, New York (1992)

    Google Scholar 

  110. Peitgen H.-O., Jürgens H. and Saupe D.: Fractals for the Classroom. Part Two: Complex Systems and Mandelbrot Set, Springer, New York (1992)

    Google Scholar 

  111. Pellissier, R.: “Setting” n-opposition. Logica Universalis, 2, 2, 235–263 (2008)

    MathSciNet  MATH  Google Scholar 

  112. Piaget, J.: Structuralism. Basic Books, New York (1970) (1968)

    MATH  Google Scholar 

  113. Plato: Parmenides (translated by S. Scolnicov). University of California Press, Berkeley (2003)

    Google Scholar 

  114. Pluder, V.: The limits of the square. Hegel’s opposition to diagrams in its historical context (2020). In: this volume

    Google Scholar 

  115. Priest, G.: The Logic of Paradox. Journal of Philosophical Logic, 8, 219–241 (1979)

    MathSciNet  MATH  Google Scholar 

  116. Priest, G.: In Contradiction. A Study of the Transconsistent. Clarendon Press, Oxford (2006) (1987).

    Google Scholar 

  117. Priest, G.: An Introduction to Non-Classical Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  118. Priest, G., Routley R. and Norman J. (eds.): Paraconsistent Logic. Essays on the Inconsistent, Philosophia Verlag, München Hamden Wien (1989)

    Google Scholar 

  119. Rayner, E.: Unconscious Logic. An introduction to Matte Blanco’s bi-logic and its uses. Routledge, London and New York (1995)

    Google Scholar 

  120. Reichenbach, H.: Philosophical foundations of quantum mechanics. Dover, Mineola – New York (2013) (1944)

    Google Scholar 

  121. Richard, D.: L’enseignement oral de Platon. Une nouvelle interpretation du platonisme. CERF, Paris (1986)

    Google Scholar 

  122. Ritsert, J.: Kleines Lehrbuch der Dialektik. Primus, Darmstadt (1997)

    Google Scholar 

  123. Rodin, A.: Categorical Logic and Hegelian Dialectics. Online slides (22 February 2013)

    Google Scholar 

  124. Rogowski, L.S.: La logica direzionale e la tesi hegeliana della contradittorietà del mutamento (Italian translation from Polish) (1964). In: [89]

    Google Scholar 

  125. Roux, C.: Initiation à la théorie des graphes. Ellipses, Paris (2009)

    MATH  Google Scholar 

  126. Sauriol, P.: Remarques sur la Théorie de l’hexagone logique de Blanché. Dialogue, 7, 374–390 (1968)

    Google Scholar 

  127. Sauriol, P.: La structure tétrahexaèdrique du système complet des propositions catégoriques. Dialogue, 15, 479–501 (1976)

    MathSciNet  Google Scholar 

  128. Schüler, H.M.: The Naturalness of Jacques Lacan’s Logic (2020). In: this volume

    Google Scholar 

  129. Sebestik, J.: Logique et mathématique chez Bernard Bolzano. Vrin, Paris (1992)

    MATH  Google Scholar 

  130. Sève, L.: Structuralisme et dialectique. Editions sociales, Paris (1984)

    Google Scholar 

  131. Shramko, Y. and Wansing, H.: Suszko’s thesis, inferential many-valuedness, and the notion of a logical system. Studia Logica, 88, (2008)

    Google Scholar 

  132. Slater: Paraconsistent Logics?. Journal of Philosophical Logic, 24, 451–454 (1995)

    Google Scholar 

  133. Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis, 3, 2, 303–332 (2009)

    MathSciNet  MATH  Google Scholar 

  134. Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis, 6, 1–2 (2012)

    MathSciNet  MATH  Google Scholar 

  135. Smessaert H. and Demey L.: Logical Geometries and Information in the Square of Oppositions. Journal of Logic, Language and Information, 23/4, 527–565 (2014)

    MathSciNet  MATH  Google Scholar 

  136. Smirnov, V.A.: Logicheskie idei N.A. Vasil’eva I sovremennaja logika (1989) (in Russian). In: [143]

    Google Scholar 

  137. Sommerville, D.M.Y.: An Introduction to the Geometry of N Dimensions, Dover, Mineola and New-York (2020) (1929)

    MATH  Google Scholar 

  138. Suszko, R.: Remarks on Łukasiewicz’s three-valued logic. Bulletin of the Section of Logic, 4, 97–90 (1975)

    MathSciNet  MATH  Google Scholar 

  139. Toth, I.: Aristotele e I fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel “Corpus Aristotelicum”. Vita & Pensiero, Milano (1997)

    Google Scholar 

  140. Turing, A. and Girard, J.-Y.: La machine de Turing (translated into French by J. Basch and P. Blanchard). Seuil, Paris (1995) (1396, 1950, 1995)

    Google Scholar 

  141. Vaidman, L.: Many-Worlds Interpretation of Quantum Mechanics. Stanford Encyclopedia of Philosophy (2014) (2002)

    Google Scholar 

  142. Vandoulakis, I.M. and Denisova, T.Y.: On the Historical Transformations of the Square of Opposition as Semiotic Object. Logica Universalis, 14, 1, 7–26 (2020)

    MathSciNet  MATH  Google Scholar 

  143. Vasil’ev, N.A.: Voobrazhaemaja logika. Izbrannye Trudy (in Russian). Nauka, Moskva, (1989)

    Google Scholar 

  144. Wolff, F.: La vérité dans la Métaphysique d’Aristote. Cahiers philosophiques de Strasbourg, tome 7, 133–168 (1998)

    Google Scholar 

  145. Zalamea, F.: Albert Lautman et la dialectique créatrice des mathématiqus modernes (2006). In: [80]

    Google Scholar 

  146. Zalamea, F.: Synthetic Philosophy of Contemporary Mathematics (translated by Z. L. Fraser). Urbanomic and Sequence, Falmouth U.K. and New York U.S.A. (2012) (2009)

    Google Scholar 

  147. Ziegler, M.: Quantum Logic: Order Structures in Quantum Mechanics. Technical report, University of Paderborn, Germany (2005)

    Google Scholar 

Download references

Acknowledgments

I wish to thank here warmly (1) my dear mother, for I owe her incredibly much, since without her love and patience, this study would not have been possible; (2) my friends Roland Bolz and Jean-François Mascari, who patiently read and commented a pre-final version of this study; (3) as well as Hans Smessaert, to which this study is co-dedicated, who tried to help me clarifying some technical points about his and Lorenz Demey’s idea of “logical geometry”. All mistakes remain mine.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moretti, A. (2022). Tri-simplicial Contradiction: The “Pascalian 3D Simplex” for the Oppositional Tri-segment. In: Beziau, JY., Vandoulakis, I. (eds) The Exoteric Square of Opposition. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-90823-2_16

Download citation

Publish with us

Policies and ethics