Skip to main content

Time-Resolved Analysis of Film Cooling Effects Under Pulsating Inflow Conditions

  • Conference paper
  • First Online:
Active Flow and Combustion Control 2021 (AFCC 2021)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 152 ))

Included in the following conference series:

  • 798 Accesses

Abstract

The development of modern gas turbines requires higher turbine inlet temperatures for an increase in thermal efficiency. With a change to a pressure gain combustion concept to increase the efficiency significantly, more challenges for the cooling of the first turbine stages must be overcome. For this purpose an array of 777 fan-shaped cooling holes on a flat plate are exposed to a series of different pulsating inflow conditions. Varying the amplitude up to 100% to the mean differential pressure, the film cooling performance is analyzed and evaluated. Adjusting the pulsating frequencies from 1 Hz–5 Hz further allows to gain a comprehensive understanding of the influence of the main parameters affecting the cooling film development. The experimental data recorded with an infrared thermography system reveals a strong impact of the pulsating inflow conditions on the adiabatic film cooling effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\eta \) :

Adiabatic film cooling effectiveness

\(\rho _\infty \) :

Main flow air density

\(\rho _c\) :

Secondary flow air density

CRC :

Collaborative Research Centre

DR :

Density ratio

\(f_p\) :

Pulse frequency

\(l_{ax}\) :

Axial position of cooling hole

M :

Blowing ratio

NGV :

Nozzle guide vane

Re :

Reynolds number

\(T_\infty \) :

Main flow air temperature

\(T_{aw}\) :

Adiabatic surface temperature

\(T_c\) :

Secondary flow air temperature

\(V_\infty \) :

Main flow velocity

\(V_c\) :

Secondary flow air density

References

  1. Baheri, S., Tabrizi, S.P.A., Jubran, B.A.: Film cooling effectiveness from trenched shaped and compound holes. Heat Mass Transf. 44(8), 989–998 (2008). https://doi.org/10.1007/s00231-007-0341-9

    Article  Google Scholar 

  2. Bakhtiari, F., Schiffer, H.P.: Numerical investigation of film cooling effects under transient inflow. In: 24th International Symposium on Air Breathing Engines (2019)

    Google Scholar 

  3. Bunker, R.S.: A review of shaped hole turbine film-cooling technology. J. Heat Transf. 127(4), 441 (2005). https://doi.org/10.1115/1.1860562

    Article  Google Scholar 

  4. Dähnert, J., Lyko, C., Peitsch, D.: Transition mechanisms in laminar separated flow under simulated low pressure turbine aerofoil conditions. J. Turbomach. 135(1), 011007 (2012). https://doi.org/10.1115/1.4006393

    Article  Google Scholar 

  5. Deinert, M., Hourmouziadis, J.: Film cooling in unsteady flow with separation bubble. In: Volume 3: Turbo Expo 2004, pp. 55–66. ASMEDC (2004). https://doi.org/10.1115/GT2004-53075

  6. Heidmann, J.D., Lucci, B.L., Reshotko, E.: An experimental study of the effect of wake passing on turbine blade film cooling. J. Turbomach. 123(2), 214 (2001). https://doi.org/10.1115/1.1354621

    Article  Google Scholar 

  7. Heinrich, A., Herbig, M., Peitsch, D., Topalovic, D., King, R.: A testrig to evaluate turbine performance and operational strategies under pulsating inflow conditions. In: AIAA Propulsion and Energy 2019 Forum. American Institute of Aeronautics and Astronautics (2019). https://doi.org/10.2514/6.2019-4039

  8. auf dem Kampe, T., et al.: Experimental and numerical investigation of flow field and downstream surface temperatures of cylindrical and diffuser shaped film cooling holes. In: Volume 5: Heat Transfer, Parts A and B, pp. 21–34. ASMEDC (2011). https://doi.org/10.1115/GT2011-45106

  9. Lyko, C., Dähnert, J., Peitsch, D.: Forcing of separation bubbles by main flow unsteadiness or pulsed vortex generating jets - a comparison. J. Turbomach. 136(5), 051016 (2013). https://doi.org/10.1115/1.4025214

    Article  Google Scholar 

  10. Neumann, N., Peitsch, D.: A comparison of steady-state models for pressure gain combustion in gas turbine performance simulation (accepted for publication). In: Proceedings of GPPS Beijing 2019. GPPS-BJ-2019-0198 (2019)

    Google Scholar 

  11. Ostermann, F., Woszidlo, R., Nayeri, C., Paschereit, C.O.: The time-resolved flow field of a jet emitted by a fluidic oscillator into a crossflow. In: 54th AIAA Aerospace Sciences Meeting (2016). https://doi.org/10.2514/6.2016-0345

  12. Sargison, J.E., Guo, S.M., Oldfield, M.L.G., Lock, G.D., Rawlinson, A.J.: A converging slot-hole film-cooling geometry–part 2: transonic nozzle guide vane heat transfer and loss. J. Turbomach. 124(3), 461–471 (2002). https://doi.org/10.1115/1.1459736

    Article  Google Scholar 

  13. Saumweber, C., Schulz, A., Wittig, S.: Free-stream turbulence effects on film cooling with shaped holes. J. Turbomach. 125(1), 65–73 (2003). https://doi.org/10.1115/1.1515336

    Article  Google Scholar 

  14. Schroeder, R.P.: Influence of in-hole roughness and high freestream turbulence on film cooling from a shaped hole. Ph.D. thesis, The Pennsylvania State University (2015)

    Google Scholar 

  15. Schroeder, R.P., Thole, K.A.: Adiabatic effectiveness measurements for a baseline shaped film cooling hole. In: Proceedings of ASME Turbo Expo 2014: Turbomachinery Technical Conference and Exposition, Düsseldorf, Germany, p. V05BT13A036 (2014). https://doi.org/10.1115/GT2014-25992

  16. Schroeder, R.P., Thole, K.A.: Effect of high freestream turbulence on flowfields of shaped film cooling holes. J. Turbomach. 138(9), 091,001-1–091,001-10 (2016). https://doi.org/10.1115/1.4032736

  17. Schroeder, R.P., Thole, K.A.: Effect of in-hole roughness on film cooling from a shaped hole. J. Turbomach. 139(3), 031,004-1–031,004-9 (2016). https://doi.org/10.1115/1.4034847

  18. Schroeder, R.P., Thole, K.A.: Thermal field measurements for a shaped hole at low and high freestream turbulence intensity. J. Turbomach. 139(2), 021,012-1–021,012-9 (2016). https://doi.org/10.1115/1.4034798

  19. Stathopoulos, P.: Comprehensive thermodynamic analysis of the humphrey cycle for gas turbines with pressure gain combustion. Energies 11(12), 3521 (2018). https://doi.org/10.3390/en11123521

    Article  Google Scholar 

  20. Topalovic, D., Wolff, S., Heinrich, A., Peitsch, D., King, R.: Minimization of pressure fluctuations in an axial turbine stage under periodic inflow conditions. In: AIAA Propulsion and Energy 2019 Forum. American Institute of Aeronautics and Astronautics (2019). https://doi.org/10.2514/6.2019-4213

  21. Womack, K.M., Volino, R.J., Schultz, M.P.: Measurements in film cooling flows with periodic wakes. J. Turbomach. 130(4), 041008 (2008). https://doi.org/10.1115/1.2812334

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support for this research by the Deutsche Forschungsgemeinschaft (DFG) in the context of the Collaborative Research Center CRC1029 ‘Substantial Efficiency Increase in Gas Turbines through Direct Use of Coupled Unsteady Combustion and Flow’ through sub-project B05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinrich, A., Herbig, M., Peitsch, D. (2022). Time-Resolved Analysis of Film Cooling Effects Under Pulsating Inflow Conditions. In: King, R., Peitsch, D. (eds) Active Flow and Combustion Control 2021. AFCC 2021. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 152 . Springer, Cham. https://doi.org/10.1007/978-3-030-90727-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90727-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90726-6

  • Online ISBN: 978-3-030-90727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics