Skip to main content

Modeling Terrains and Subsurface Geology

  • Chapter
  • First Online:
Interactive Data Processing and 3D Visualization of the Solid Earth

Abstract

The process of creating terrain and landscape models is important in a variety of computer graphics and visualization applications, from films and computer games, via flight simulators and landscape planning, to scientific visualization and subsurface modelling. Interestingly, the modelling techniques used in this large range of application areas have started to merge in the last years. This chapter is a report where we present two taxonomies of different modelling methods. Firstly we present a data oriented taxonomy, where we divide modelling into three different scenarios: the data-free, the sparse-data and the dense-data scenario. Then we present a workflow oriented taxonomy, where we divide modelling into the separate stages necessary for creating a geological model. We start the report by showing that the new trends in geological modelling are approaching the modelling methods that have been developed in computer graphics. We then introduce the process of geological modelling followed by our two taxonomies with descriptions and comparisons of selected methods. Finally, we discuss the challenges and trends in geological modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Pringle, J. Howell, D. Hodgetts, A. Westerman, D. Hodgson, Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break 24, 33 (2006)

    Google Scholar 

  2. S. Houlding, 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer (1994)

    Google Scholar 

  3. A.K. Turner, Challenges and trends for geological modelling and visualisation. Bull. Eng. Geol. Environ. 65(2), 109–127 (2006)

    Article  Google Scholar 

  4. A. Turner, C. Gable, A review of geological modeling, in Three-Dimensional Geologic Mapping for Groundwater Applications. Minnesota Geological Survey Open-file Report, 2007, pp. 07–4

    Google Scholar 

  5. G. Caumon, P. Collon-Drouaillet, C. Le Carlier, S. de Veslud, Viseur, J. Sausse, Surface-based 3D modeling of geological structures. Math. Geosci. 41(8), 927–945 (2009)

    Google Scholar 

  6. F. Wellmann, G. Caumon, Chapter one—3-d structural geological models: concepts, methods, and uncertainties, in Advances in Geophysics, vol. 59 (Elsevier, 2018), pp. 1–121

    Google Scholar 

  7. J. Olsen, Realtime procedural terrain generation, tech. rep., Department of Mathematics and Computer Science (IMADA) University of Southern Denmark, 2004

    Google Scholar 

  8. A. Peytavie, E. Galin, J. Grosjean, S. Merillou, Procedural generation of rock piles using aperiodic tiling. Comput. Graph. Forum 28(7), 1801–1809 (2009)

    Article  Google Scholar 

  9. J. Schneider, T. Boldte, R. Westermann, Real-time editing, synthesis, and rendering of infinite landscapes on GPUs, in Vision, Modeling, and Visualization 2006: Proceedings, 22–24 Nov 2006, Aachen, Germany, 2006, p. 145

    Google Scholar 

  10. F. Belhadj, Terrain modeling: a constrained fractal model, in Proceedings of the 5th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, vol. 1, 2007, pp. 197–204

    Google Scholar 

  11. P. Krištof, B. Beneš, J. Křivánek, O. Št’ava, Hydraulic erosion using smoothed particle hydrodynamics. Comput. Graph. Forum 28(2), 219–228 (2009)

    Article  Google Scholar 

  12. H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin, Feature based terrain generation using diffusion equation. Comput. Graph. Forum 29(7), 2179–2186 (2010)

    Article  Google Scholar 

  13. P. Prusinkiewicz, M. Hammel, C. Tn, A fractal model of mountains with rivers, Panorama, 1993, pp. 174–180

    Google Scholar 

  14. M. Hudak, R. Durikovic, Terrain models for mass movement erosion, in Proceedings of EG-UK TPCG Conference, 2011

    Google Scholar 

  15. J. Gain, P. Marais, W. Straß er, Terrain sketching, in Proceedings of the 2009 symposium on Interactive 3D graphics and games, 2009, pp. 31–38

    Google Scholar 

  16. A. Peytavie, E. Galin, J. Grosjean, S. Merillou, Arches: a framework for modeling complex terrains. Comput. Graph. Forum 28(2), 457–467 (2009)

    Article  Google Scholar 

  17. E. Vital Brazil, I. Macêdo, M. costa Sousa, L. H. de Figueiredo, L. Velho, Sketching Variational Hermite-RBF Implicits, in Proceedings of Sketch Based Interfaces and Modeling, 2010, pp. 1–8

    Google Scholar 

  18. J. Brosz, F. Samavati, M. Sousa, Terrain synthesis by-example, Advances in Computer Graphics and Computer Vision, 2007, pp. 58–77

    Google Scholar 

  19. M. Natali, I. Viola, D. Patel, Rapid visualization of geological concepts, in SIBGRAPI 2012 (XXV Conference on Graphics, Patterns and Images), Aug 2012

    Google Scholar 

  20. E. M. Lidal, M. Natali, D. Patel, H. Hauser, I. Viola, Geological storytelling, Computers & Graphics, 2013

    Google Scholar 

  21. R. Groshong, 3-D Structural Geology: A Practical Guide to Surface and Subsurface Map Interpretation (Springer, 1999)

    Google Scholar 

  22. A. Lemon, N. Jones, Building solid models from boreholes and user-defined cross-sections. Comput. Geosci. 29(5), 547–555 (2003)

    Article  Google Scholar 

  23. O. Kaufmann, T. Martin, 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput. Geosci. 34(3), 278–290 (2008)

    Article  Google Scholar 

  24. J. Ming, M. Pan, An improved horizons method for 3D geological modeling from boreholes, 2009 International Conference on Environmental Science and Information Application Technology, 2009, pp. 369–374

    Google Scholar 

  25. D. Dhont, P. Luxey, J. Chorowicz, 3-D modeling of geologic maps from surface data. AAPG Bull. 89(11), 1465–1474 (2005)

    Article  Google Scholar 

  26. Z. Zhang, 3D Terrain reconstruction based on contours, in Computer, 2005, pp. 3–8

    Google Scholar 

  27. W. Baojun, S. Bin, S. Zhen, A simple approach to 3D geological modelling and visualization. Bull. Eng. Geol. Environ. 68(4), 559–565 (2009)

    Article  Google Scholar 

  28. E. De Kemp, K. Sprague, Interpretive tools for 3-D structural geological modeling part I: Bezier-based curves, ribbons and grip frames. GeoInformatica 7(1), 55–71 (2003)

    Article  Google Scholar 

  29. K. B. Sprague, E.A. de Kemp, Interpretive tools for 3-D structural geological modelling part II: surface design from sparse spatial data. GeoInformatica 9(1), 5–32 (2005)

    Google Scholar 

  30. G. Caumon, F. Lepage, C.H. Sword, J.-L. Mallet, Building and editing a sealed geological model. Math. Geol. 36(4), 405–424 (2004)

    Article  MATH  Google Scholar 

  31. Q. Wu, H. Xu, An approach to computer modeling and visualization of geological faults in 3D. Comput. Geosci. 29(4), 503–509 (2003)

    Google Scholar 

  32. T. Frank, Geological information retrieval using tetrahedral meshes, gocad.org, 2006, pp. 12–15

    Google Scholar 

  33. J. Plate, M. Tirtasana, R. Carmona, B. Fröhlich, Octreemizer: a hierarchical approach for interactive roaming through very large volumes, in Proceedings of the Symposium on Data Visualisation, VISSYM ’02, Eurographics Association, 2002, pp. 53–ff

    Google Scholar 

  34. E.M. Lidal, T. Langeland, C. Giertsen, J. Grimsgaard, R. Helland, A decade of increased oil recovery in virtual reality. IEEE Comput. Graphics Appl. 27(6), 94–97 (2007)

    Article  Google Scholar 

  35. C. Andersen, A.-J. van Wijngaarden, Interpretation of 4d avo inversion results using rock physics templates and virtual reality visualization, North Sea examples, SEG Annual Meeting, September 2007

    Google Scholar 

  36. D. Patel, C. Giertsen, J. Thurmond, J. Gjelberg, M.E. Gröller, The seismic analyzer: interpreting and illustrating 2D seismic data. IEEE Trans. Vis. Comput. Graph. 14(6), 1571–8 (2008)

    Article  Google Scholar 

  37. D. Patel, S. Bruckner, I. Viola, M.E. Gröller, Seismic volume visualization for horizon extraction. IEEE Pacific Visual. 2010, 73–80 (2010)

    Google Scholar 

  38. D. Patel, C. Giertsen, J. Thurmond, M. Gröller, Illustrative rendering of seismic data, in Proceedings of Vision Modeling and Visualization, 2007, pp. 13–22

    Google Scholar 

  39. C. Wijns, Inverse modelling in geology by interactive evolutionary computation. J. Struct. Geol. 25(10), 1615–1621 (2003)

    Article  Google Scholar 

  40. A. Guillen, P. Calcagno, G. Courrioux, A. Joly, P. Ledru, Geological modelling from field data and geological knowledge Part II. Modelling validation using gravity and magnetic data inversion. Phys. Earth Planetary Interiors 171(1–4), 158–169 (2008)

    Google Scholar 

  41. G. Caumon, Towards stochastic time-varying geological modeling. Math. Geosci. 42(5), 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Musgrave, C. Kolb, R. Mace, The synthesis and rendering of eroded fractal terrains. ACM SIGGRAPH Comput. Graph. 23(3), 41–50 (1989)

    Article  Google Scholar 

  43. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freedman and Co., New York, 1982)

    MATH  Google Scholar 

  44. V. Sapozhnikov, V. Nikora, Simple computer model of a fractal river network with fractal individual watercourses. J. Phys. A: Math. Gen. 26, L623 (1993)

    Article  Google Scholar 

  45. S. Stachniak, W. Stuerzlinger, An algorithm for automated fractal terrain deformation, in Computer Graphics and Artificial Intelligence, 2005

    Google Scholar 

  46. J. Doran, I. Parberry, Controlled procedural terrain generation using software agents. IEEE Trans. Comput. Intell. AI Games 2(2), 111–119 (2010)

    Article  Google Scholar 

  47. P. Roudier, B. Peroche, M. Perrin, Landscapes synthesis achieved through erosion and deposition process simulation. Comput. Graph. Forum 12(3), 375–383 (1993)

    Article  Google Scholar 

  48. N. Chiba, K. Muraoka, An erosion model based on velocity fields for the visual simulation of mountain scenery. J. Visual. 194 (1998)

    Google Scholar 

  49. J. Dorsey, A. Edelman, H. Jensen, J. Legakis, H. Pedersen, Modeling and rendering of weathered stone, in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 225–234

    Google Scholar 

  50. B. Benes, R. Forsbach, Layered data representation for visual simulation of terrain erosion, in Spring Conference on Computer Graphics (SCCG), 2001

    Google Scholar 

  51. B. Benes, R. Forsbach, Visual simulation of hydraulic erosion. J. WSCG (2002)

    Google Scholar 

  52. B. Benes, V. Tesinsky, J. Hornys, S.K. Bhatia, Hydraulic erosion. Comput. Animat. Virtual Worlds 17(2), 99–108 (2006)

    Article  Google Scholar 

  53. O. Stava, B. Benes, M. Brisbin, J. Krivanek, Interactive terrain modeling using hydraulic erosion, in Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2008, pp. 201–210

    Google Scholar 

  54. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375 (1977)

    Article  MATH  Google Scholar 

  55. L. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013 (1977)

    Article  Google Scholar 

  56. G.J.P. de Carpentier, R. Bidarra, Interactive gpu-based procedural heightfield brushes, in Proceedings of the 4th International Conference on Foundations of Digital Games, FDG ’09, (New York, NY, USA), ACM, 2009, pp. 55–62

    Google Scholar 

  57. G. Cordonnier, M.-P. Cani, B. Benes, J. Braun, E. Galin, Sculpting mountains: interactive terrain modeling based on subsurface geology. IEEE Trans. Visual Comput. Graphics 24, 1756–1769 (2018)

    Article  Google Scholar 

  58. G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie, E. Guérin, Large scale terrain generation from tectonic uplift and fluvial erosion. Comput. Graph. Forum 35, 165–175 (2016)

    Article  Google Scholar 

  59. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, M.-P. Cani, Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Trans. Graph. 36, 134 (2017). The paper was presented at Siggraph 2017

    Google Scholar 

  60. E. Galin, E. Guérin, A. Peytavie, G. Cordonnier, M.-P. Cani, B. Benes, J. Gain, A review of digital terrain modeling. Comput. Graph. Forum 38(2) (2019)

    Google Scholar 

  61. J.M. Cohen, J.F. Hughes, R.C. Zeleznik, Harold: a world made of drawings, in Proceedings of NPAR ’00, 2000, pp. 83–90

    Google Scholar 

  62. N. Watanabe, T. Igarashi, A sketching interface for terrain modeling, in ACM SIGGRAPH 2004 Posters, 2004, p. 73

    Google Scholar 

  63. H. Zhou, J. Sun, G. Turk, J.M. Rehg, Terrain synthesis from digital elevation models. IEEE Trans. Visual Comput. Graphics 13(4), 834–48 (2007)

    Article  Google Scholar 

  64. M. Becher, M. Krone, G. Reina, T. Ertl, Feature-based volumetric terrain generation and decoration. IEEE Trans. Visual Comput. Graphics 25, 1283–1296 (2019)

    Article  Google Scholar 

  65. E. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes, B. Martinez, Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. 36 (2017)

    Google Scholar 

  66. P. Isola, J. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks. CoRR abs/1611.07004 (2016)

    Google Scholar 

  67. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-resolution image synthesis and semantic manipulation with conditional gans, 2017

    Google Scholar 

  68. E. Guérin, J. Digne, E. Galin, A. Peytavie, Sparse representation of terrains for procedural modeling. Comput. Graph. Forum 35, 177–187 (2016)

    Article  Google Scholar 

  69. A. Bernhardt, A. Maximo, L. Velho, H. Hnaidi, M.-P. Cani, Real-time terrain modeling using CPU-GPU coupled computation, in XXIV SIBGRAPI, (Maceio, Brazil), Aug 2011

    Google Scholar 

  70. M. Natali, T.G. Klausen, D. Patel, Sketch-based modelling and visualization of geological deposition. Comput. Geosci. 67, 40–48 (2014)

    Article  Google Scholar 

  71. M. Natali, J. Parulek, D. Patel, Rapid modelling of interactive geological illustrations with faults and compaction, in Proceedings of the 30th Spring Conference on Computer Graphics, SCCG ’14, ACM, 2014

    Google Scholar 

  72. R. Amorim, E.V. Brazil, F. Samavati, M.C. Sousa, 3d geological modeling using sketches and annotations from geologic maps, in SBIM ’14, ACM, 2014, pp. 17–25

    Google Scholar 

  73. D. Lopes, D. Mendes, M. Sousa, J. Jorge, Expeditious illustration of layer-cake models on and above a tactile surface. Comput. Geosci. 90, 02 (2016)

    Article  Google Scholar 

  74. K. Takayama, O. Sorkine, A. Nealen, T. Igarashi, Volumetric modeling with diffusion surfaces, in ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), vol. 29, no. 6, 2010

    Google Scholar 

  75. A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, D. Salesin, Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27 (2008)

    Google Scholar 

  76. L. Wang, Y. Yu, K. Zhou, B. Guo, Multiscale vector volumes. ACM Trans. Graph. 30, 167:1–167:8 (2011)

    Google Scholar 

  77. SIS, Petrel seismic interpretation software, in Schlumberger Information Solutions. https://www.software.slb.com/products/petrel/petrel-geology-and-modeling, Accessed Mar 2021

  78. B.J. Kadlec, H.M. Tufo, G.A. Dorn, Knowledge-assisted visualization and segmentation of geologic features. IEEE Comput. Graphics Appl. 30, 30–39 (2010)

    Article  Google Scholar 

  79. D. Parks, Freeform modeling of faulted surfaces in seismic images. SEG Tech. Prog. Exp. Abst. 28(1), 2702–2706 (2009)

    Google Scholar 

  80. M. Botsch, L. Kobbelt, An intuitive framework for real-time freeform modeling, in ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, 2004, pp. 630–634

    Google Scholar 

  81. R. Amorim, E.V. Brazil, D. Patel, M.C. Sousa, Sketch modeling of seismic horizons from uncertainty, in Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, SBIM ’12, 2012, pp. 1–10

    Google Scholar 

  82. S. Motta, A. Montenegro, M. Gattass, D. Roehl, A 3d sketch-based formulation to model salt bodies from seismic data. Comput. Geosci. 142 (2020)

    Google Scholar 

  83. A. Nealen, O. Sorkine, M. Alexa, D. Cohen-Or, A sketch-based interface for detail-preserving mesh editing, SIGGRAPH, (NY, USA), Association for Computing Machinery, New York, 2005

    Google Scholar 

  84. R. Liu, L. Shen, X. Chen, G. Ji, B. Zhao, C. Tan, M. Su, Sketch-based slice interpretative visualization for stratigraphic data. J. Imag. Sci. Technol. (2019)

    Google Scholar 

  85. E.M. Lidal, H. Hauser, I. Viola, Geological storytelling—graphically exploring and communicating geological sketches, in Proceedings of Sketch-Based Interfaces and Modeling (SBIM 2012), 2012, pp. 11–20

    Google Scholar 

  86. M. Garcia, M.-P. Cani, R. Ronfard, C. Gout, C. Perrenoud, Automatic generation of geological stories from a single sketch, in Proceedings of the Joint Symposium on Computational Aesthetics and Sketch-Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering. Expressive ’18, 2018

    Google Scholar 

  87. G. Laurent, G. Caumon, M. Jessell, Interactive editing of 3d geological structures and tectonic history sketching via a rigid element method. Comput. Geosci. 74 (2015)

    Google Scholar 

  88. J.-L. Mallet, Discrete smooth interpolation. ACM Trans. Graph. 8, 121–144 (1989)

    Article  MATH  Google Scholar 

  89. J.-L. Mallet, Discrete smooth interpolation in geometric modelling. Comput. Aided Des. 24(4), 178–191 (1992)

    Article  MATH  Google Scholar 

  90. J. Mallet, Discrete modeling for natural objects. Math. Geol. 29(2), 199–219 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Sibson, A brief description of natural neighbor interpolation, in Interpreting multivariate Data, 1981, pp. 21–26

    Google Scholar 

  92. J.-P. Chilès, P. Delfiner, Geostatistics: Modeling Spatial Uncertainty (Wiley, 1999)

    Google Scholar 

  93. T. Viard, G. Caumon, B. Lévy, Adjacent versus coincident representations of geospatial uncertainty: which promote better decisions? Comput. Geosci. (2010)

    Google Scholar 

  94. J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, T.R. Evans, Reconstruction and representation of 3d objects with radial basis functions, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, (New York, NY, USA), ACM, 2001, pp. 67–76

    Google Scholar 

  95. Leapfrog, Leapfrog radial basis function. https://www.seequent.com/comparing-leapfrog-radial-basis-function-and-kriging/, 2020. Accessed Aug 2021

  96. I. Macêdo, J.A.P. Gois, L. Velho, Hermite radial basis functions implicits. Comput. Graph. Forum 30(1), 27–42 (2011)

    Google Scholar 

  97. P. Calcagno, J. Chilès, G. Courrioux, A. Guillen, Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys. Earth Planet. Int. 171(1–4), 147–157 (2008)

    Article  Google Scholar 

  98. P. McInerney, A. Goldberg, P. Calcagno, G. Courrioux, A. Guillen, R. Seikel, Improved 3D geology modelling using an implicit function interpolator and forward modelling of potential field data. Proc. Explor. 7, 919–922 (2007)

    Google Scholar 

  99. B. Wu, T. Rahman, X.-C. Tai, Sparse-data based 3d surface reconstruction for cartoon and map, in Imaging, Vision and Learning Based on Optimization and PDEs, ed. by X.-C. Tai, E. Bae, M. Lysaker (Springer International Publishing, 2018)

    Google Scholar 

  100. M. Floater, Y. Halbwachs, O. Hjelle, M. Reimers, Omega: a cad-based approach to geological modelling.,” GOCAD ENSG, Conference Proceedings, June 1998

    Google Scholar 

  101. N. Euler, C.H. Sword, J.-C. Dulac, A new tool to seal a 3d earth model: a cut with constraints, in Proceedings of 68th Annual Meeting, Society of Exploration Geophysicists, 1998, pp. 710–713

    Google Scholar 

  102. F. Aminzadeh, N. Burkhard, N. Nicoletis, F. Rocca, W. K, SEG-EAGE 3D modeling project, in The Leading Edge, 1994

    Google Scholar 

  103. C. De Boor, A Practical Guide to Splines. No. v. 27 in Applied Mathematical Sciences (Springer, 1978)

    Google Scholar 

  104. ArcGIS, Arcgis mapping and analytics platform, ArcGIS Software. https://www.esri.com/en-us/arcgis/about-arcgis/overview, Accessed Mar 2021

  105. F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  106. Web3D, Vrml97 functional specification, VRML Standard. https://www.web3d.org/documents/specifications/14772/V2.0/index.html, Accessed Mar 2021

  107. L. feng Zhu, Z. He, X. Pan, X. cai Wu, An approach to computer modeling of geological faults in 3d and an application. J. China Univ. Min. Technol. 16(4), 461–465 (2006)

    Google Scholar 

  108. Y. Halbwachs, O. Hjelle, Generalized maps in geological modeling: object-oriented design of topological kernels, in Advances in Software Tools for Scientific Computing (Springer, Berlin, 2002)

    Google Scholar 

  109. P. Lienhardt, Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput. Aided Des. 23, 59–82 (1991)

    MATH  Google Scholar 

  110. M. Apel, A 3d geoscience information system framework. PhD thesis, TU Freiberg, pp 16–31, 2004

    Google Scholar 

  111. S. Brandel, S. Schneider, M. Perrin, N. Guiard, J.-F. Rainaud, P. Lienhardt, Y. Bertrand, Automatic building of structured geological models, in Proceedings of the ninth ACM Symposium on Solid Modeling and Applications, SM ’04, 2004, pp. 59–69

    Google Scholar 

  112. M. Perrin, B. Zhu, J.-F. Rainaud, S. Schneider, Knowledge-driven applications for geological modeling. J. Petrol. Sci. Eng. 47, 89–104 (2005)

    Article  Google Scholar 

  113. A.A. Pasko, V. Adzhiev, A. Sourin, V.V. Savchenko, Function representation in geometric modeling: concepts, implementation and applications. Vis. Comput. 11(8), 429–446 (1995)

    Article  Google Scholar 

  114. E. Kartasheva, V. Adzhiev, P. Comninos, O. Fryazinov, A. Pasko, Heterogeneous objects modelling and applications, in An Implicit Complexes Framework for Heterogeneous Objects Modelling (Springer, Berlin, 2008), pp. 1–41

    Google Scholar 

  115. M.N. Gamito, S.C. Maddock, Topological correction of hypertextured implicit surfaces for ray casting. Vis. Comput. 24, 397–409 (2008)

    Article  Google Scholar 

  116. P. Tahmasebi, Multiple Point Statistics: A Review. 06 2018

    Google Scholar 

  117. M.J. Abdollahifard, S. Ahmadi, Reconstruction of binary geological images using analytical edge and object models. Comput. Geoscie. 89, 239–251 (2016)

    Google Scholar 

  118. F. Wellmann, M. Lindsay, J. Pohb, M. Jessell, Validating 3-d structural models with geological knowledge for improved uncertainty evaluations. Energy Procedia 59, 374–381 (2014)

    Article  Google Scholar 

  119. G. Mariethoz, S. Lefebvre, Bridges between multiple-point geostatistics and texture synthesis: review and guidelines for future research. Comput. Geosci. 66, 66–80 (2014)

    Article  Google Scholar 

  120. T.-F. Zhang, P. Tilke, E. Dupont, L.-C. Zhu, L. Liang, W. Bailey, Generating geologically realistic 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 16(3) (2019)

    Google Scholar 

  121. R. Schmidt, B. Wyvill, M.C. Sousa, J.A. Jorge, Shapeshop: sketch-based solid modeling with blobtrees, in ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06 (NY, USA), ACM, New York, 2006

    Google Scholar 

  122. O. Karpenko, J.F. Hughes, R. Raskar, Free-form sketching with variational implicit surfaces. Comput. Graph. Forum 21(3), 585–594 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, D., Natali, M., Lidal, E.M., Parulek, J., Brazil, E.V., Viola, I. (2021). Modeling Terrains and Subsurface Geology. In: Patel, D. (eds) Interactive Data Processing and 3D Visualization of the Solid Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-90716-7_1

Download citation

Publish with us

Policies and ethics