Skip to main content

Response of Foodborne Pathogens to High-Pressure Processing

  • Chapter
  • First Online:
Stress Responses of Foodborne Pathogens
  • 616 Accesses

Abstract

High-pressure processing (HPP) makes use of an elevated pressure for the microbial inactivation in foods. HPP works without generation of heat, which poses minimal impacts on food sensory characteristics. HPP treatment can retain better organoleptic attributes of foods and also prolong the shelf life of food product with free of any additive or preservative. Therefore, HPP represents a commercially valuable and practical alternative technology for preserving foods, and it may be able to replace the thermal processing. This chapter offers a comprehensive understanding of the basic knowledge about HPP technology, the primary factors affecting the response of foodborne pathogens to HPP, the mechanisms underlying the action mode of HHP on the cell structure, physiological functions, proteome, and transcriptome of foodborne microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aertsen A, Spiegeleer PD, Vanoirbeek K et al (2005) Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 71(5):2226–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn J, Balasubramaniam VM, Yousef AE (2007) Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int J Food Microbiol 113(3):321–329

    Article  CAS  PubMed  Google Scholar 

  • Aldrete-Tapia JA, Torres JA (2020) Enhancing the inactivation of bacterial spores during pressure-assisted thermal processing. Food Eng Rev. https://doi.org/10.1007/s12393-020-09252-x

  • Alpas H, Kalchayanand N, Bozoglu F et al (2000) Interactions of high hydrostatic pressure pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int J Food Microbiol 60(1):33–42

    Article  Google Scholar 

  • Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam VM, Farkas D (2008) High-pressure food processing. Food Sci Technol Int 14:413–418

    Article  Google Scholar 

  • Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure-based technologies in the food industry. Annu Rev Food Sci Technol 6(1):435–462

    Article  CAS  PubMed  Google Scholar 

  • Bang WS, Chung HJ (2010) Effect of high hydrostatic pressure on the enzyme activities in Saccharomyces cerevisiae and Escherichia coli. New Biotechnol 27(4):440–444

    Article  CAS  Google Scholar 

  • Baptista I, Rocha SM, Cunha  et al (2016) Inactivation of Staphylococcus aureus by high pressure processing: an overview. Innov Food Sci Emerg Technol 36:128–149

    Article  CAS  Google Scholar 

  • Black EP, Kelly AL, Fitzgerald GF (2005) The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innov Food Sci Emerg Technol 6(3):286–292

    Article  CAS  Google Scholar 

  • Bowman JP, Bittencourt CR, Ross T (2008) Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing. Microbiology 154(2):462–475

    Article  CAS  PubMed  Google Scholar 

  • Buerman EC, Worobo RW, Padilla-Zakour OI (2020) High pressure processing of heat and pressure resistant fungi as affected by pH, water activity, sulfites, and dimethyl dicarbonate in a diluted apple juice concentrate. Food Control 120:107551

    Article  CAS  Google Scholar 

  • Bull MK, Zerdin K, Howe E, Goicoechea D et al (2004) The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov Food Sci Emerg Technol 5(2):135–149

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Casadei MA, Manas P, Niven G et al (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapleau N, Ritz M, Delépine S et al (2006) Influence of kinetic parameters of high pressure processing on bacterial inactivation in a buffer system. Int J Food Microbiol 106:324–330

    Article  CAS  PubMed  Google Scholar 

  • Charoenwong D, Andrews S, Mackey B (2011) Role of rpoS in the development of cell envelope resilience and pressure resistance in stationary-phase Escherichia coli. Appl Environ Microbiol 77(15):5220–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan OP, Ravi N, Roopa N et al (2017) High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice. J Food Sci Technol 54(12):4135–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla R, Patil GR, Singh AK (2011) High hydrostatic pressure technology in dairy processing: a review. J Food Sci Technol 48(3):260–268

    Article  PubMed  Google Scholar 

  • Chen W, Heymann G, Kursula P (2012) Effects of gigapascal level pressure on protein structure and function. J Phys Chem B 116(3):1100–1110

    Article  CAS  PubMed  Google Scholar 

  • Chilukuri LN, Fortes PAG, Bartlett DH (1997) High pressure modulation of Escherichia coli DNA gyrase activity. Biochem Biophys Res Commun 239(2):552–556

    Article  CAS  PubMed  Google Scholar 

  • Cocito C (1978) Pressure dissociation of bacterial ribosomes and reassociation of ribosomal subunits. Mol Gen Genomics 162(1):43–50

    Article  CAS  Google Scholar 

  • Considine KM, Kelly AL, Fitzgerald GF et al (2008) High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiol Lett 281(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Daryaei H, Balasubramaniam VM (2013) Kinetics of Bacillus coagulans spore inactivation in tomato juice by combined pressureheat treatment. Food Control 30(1):168–175

    Article  CAS  Google Scholar 

  • Deamer DW, Dworkin JP (2005) Chemistry and physics of primitive membranes. Top Curr Chem 259(3):897–897

    Google Scholar 

  • Del Olmo A, Calzada J, Nuñez M (2012) Effect of lactoferrin and its derivatives against Gram-positive bacteria in vitro and, combined with high pressure, in chicken breast fillets. Meat Sci 90(1):71–76

    Article  PubMed  CAS  Google Scholar 

  • Doona CJ et al (2014) High pressure germination of Bacillus subtilis spores with alterations in levels and types of germination proteins. J Appl Microbiol 117:711–720

    Article  CAS  PubMed  Google Scholar 

  • Drews O, Weiss W, Reil G et al (2002) High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2(6):765–774

    Article  CAS  PubMed  Google Scholar 

  • Duru IC, Bucur FI, Andreevskaya M et al (2021) High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics 22:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erkmen O (2009) Mathematical modeling of Salmonella Typhimurium inactivation under high hydrostatic pressure at different temperatures. Food Bioprod Process 87(1):68–73

    Article  Google Scholar 

  • Farkas D, Hoover D (2000) High pressure processing: kinetics of microbial inactivation for alternative food processing technologies. J Food Sci 2000:47–64

    Article  Google Scholar 

  • Farnaud S, Spiller C, Moriarty LC et al (2004) Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett 233:193–199

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P M B, Domitrovic T, Kao C M et al. (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556(1–3):153–160

    Google Scholar 

  • Food & Drugs Administration (FDA). http://www.fda.gov/Food. Accessed 20 June 2021

  • Furukawa S, Shimoda M, Hayakawa I (2010) Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment. J Appl Microbiol 94(5):836–841

    Article  Google Scholar 

  • Gall A, Ellervee A, Sturgis JN et al (2003) Membrane protein stability: high pressure effects on the structure and chromophore-binding properties of the light-harvesting complex LH2. Biochemistry 42(44):13019–13,026

    Article  CAS  Google Scholar 

  • Gänzle M, Liu Y (2015) Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications. Front Microbiol 6:599–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S et al (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117(1):1–28

    Article  CAS  PubMed  Google Scholar 

  • Gayán E, Torres JA, Paredes-Sabja D (2012) Hurdle approach to increase the microbial inactivation by high pressure processing: effect of essential oils. Food Eng Rev 4(3):141–148

    Article  CAS  Google Scholar 

  • Gayán E, Rutten N, Van Impe J et al (2019) Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiol 78:171–178

    Article  PubMed  CAS  Google Scholar 

  • Gervilla R, Capellas M, Ferragut V et al (1997) Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe’s milk. J Food Prot 60(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Grauwet T, Plancken I, Vervoort L et al (2016) High-pressure processing uniformity. Springer, New York

    Book  Google Scholar 

  • Gross M, Lehle K et al (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Eur J Biochem 218(2):463–468

    Article  CAS  PubMed  Google Scholar 

  • Hamann SD (1957) Physico-chemical effects of pressure. Butterworth & Company, London

    Google Scholar 

  • Hartmann C, Delgado A (2004) Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. J Biomech 37(7):977–987

    Article  PubMed  Google Scholar 

  • Hendrickx ME, Ludikhuyze LR, Broeck I et al (1998) Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol 9(5):197–203

    Article  CAS  Google Scholar 

  • Herdegen V (1998) Hochdruckinaktivierung von Mikroorganismen in Lebensmitteln und Lebensmittelreststoffen. Technische Universität München (Dissertation)

    Google Scholar 

  • HIPERBARIC (2018) Hiperbaric-Blog. www.blog.hiperbaric.com. Accessed 22 Oct 2018

  • Hiremath ND, Ramaswamy HS (2012) High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. J Food Process Preserv 36:113–125

    Article  Google Scholar 

  • Hite BH (1899) The effect of pressure in the preservation of milk. Sci Am 821

    Google Scholar 

  • Huang HW, Lung HM, Yang BB et al (2014) Responses of microorganisms to high hydrostatic pressure processing. Food Control 40:250–259

    Article  Google Scholar 

  • Huang G, Chen S, Dai C et al (2017a) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149

    Article  CAS  PubMed  Google Scholar 

  • Huang HW, Wu SJ, Lu JK et al (2017b) Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8

    Article  Google Scholar 

  • Huang HW, Hsu CP, Wang CY (2020) Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal 28(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Infante AA, Demple B, Chaires JB (1982) Analysis of the Escherichia coli ribosome-ribosomal subunit equilibrium using pressure-induced dissociation. J Biol Chem 257(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Sato T, Wachi M et al (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150(6):1965–1972

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R, Bernhardt G, Lüdemann HD et al (1988) Pressure-induced alterations in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl Environ Microbiol 54(10):2375–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenssen H, Hancock REW (2009) Antimicrobial properties of lactoferrin. Biochimie 91(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Jofré A, Champomier-Vergès M, Anglade P et al (2007) Protein synthesis in lactic acid and pathogenic bacteria during recovery from a high pressure treatment. Res Microbiol 158(6):512–520

    Article  PubMed  CAS  Google Scholar 

  • John Bean Technologies Corporation (JBT) (2021) Avure technologies-high pressure processing. https://www.jbtc.com/foodtech. Accessed 10 July 2021

  • Jrgensen PL (1982) Mechanism of the Na+, K+ pump protein structure and conformations of the pure (Na+ K+)-ATPase. Biochim Biophys Acta 694(1):27–68

    Article  Google Scholar 

  • Kalchayanand N, Frethem C, Dunne P et al (2002) Hydrostatic pressure and bacteriocin-triggered cell-wall lysis of Leuconostoc mesenteroides. Innov Food Sci Emerg Technol 3(1):33–40

    Article  CAS  Google Scholar 

  • Kaletunç G, Lee J, Alpas H et al (2004) Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Appl Environ Microbiol 70(2):1116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato M, Hayashi R, Tsuda T et al (2002) High pressure-induced changes of biological membrane. Eur J Biochem 269(1):110–118

    Article  CAS  PubMed  Google Scholar 

  • Klotz B, Mañas P, Mackey BM (2010) The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. Int J Food Microbiol 137(2–3):214–220

    Article  CAS  PubMed  Google Scholar 

  • Kobori H, Sato M, Tameike A et al (1995) Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Yumura S (2020) Strategies for enhancing gene expression in Escherichia coli. Appl Microbiol Biotechnol 104(9):3825–3834

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Li X, Farid M (2016) A review on recent development in non-conventional food sterilization technologies. J Food Eng 182:33–45

    Article  Google Scholar 

  • Li R, Wang Y, Ling J et al (2017) Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems. Food Chem 231(15):96

    Article  CAS  PubMed  Google Scholar 

  • Li H, Mercer R, Behr J et al (2020a) Heat and pressure resistance in Escherichia coli relates to protein folding and aggregation. Front Microbiol 11:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Sun X, Liao X et al (2020b) Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: challenges and future perspectives. Compr Rev Food Sci Food Saf 19:3476–3500

    Article  PubMed  Google Scholar 

  • Li S, Zhang R, Lei D et al (2021) Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci Technol 109:1–15

    Article  CAS  Google Scholar 

  • Lindsay DS, Holliman D et al (2008) Effects of high pressure processing on Toxoplasma gondii oocysts on raspberries. J Parasitol 94(3):757–758

    Article  PubMed  Google Scholar 

  • Lodish H (2008) Molecular cell biology. Macmillan, New York, pp 409–429

    Google Scholar 

  • Malone AS, Shellhammer TH, Courtney PD (2002) Effects of high pressure on the viability, morphology, lysis, and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 68(9):4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone AS, Chung YK, Yousef AE (2006) Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72(4):2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mañas P, Mackey BM (2004) Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol 70(3):1545–1554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45(2):713–721

    Article  CAS  Google Scholar 

  • Margosch D et al (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markets and Markets (2019). www.marketsandmarkets.com. Accessed 30 Nov 2019

  • Masschalck B, Deckers D, Michiels CW (2003) Sensitization of outer-membrane mutants of Salmonella Typhimurium and Pseudomonas aeruginosa to antimicrobial peptides under high pressure. J Food Prot 66(8):1360–1367

    Article  CAS  PubMed  Google Scholar 

  • Masschalck B, Deckers D, Michiels CW (2003) Sensitization of outer-membrane mutants of Salmonella Typhimurium and Pseudomonas aeruginosa to antimicrobial peptides under high pressure. J Food Prot 66(8):1360–1367

    Google Scholar 

  • Metrick C, Hoover DG, Farkas DF (1989) Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella. J Food Sci 54(6):1547–1549

    Article  Google Scholar 

  • Mills G, Earnshaw R, Patterson MF (1998) Effect of high hydrostatic pressure on Clostridium sporogenes spores. Lett Appl Microbiol 26:227–230

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HMH, Diono BHS, Yousef AE (2012) Structural changes in Listeria monocytogens treated with gamma radiation, pulsed electric field and ultra-high pressure. J Food Saf 32:66–73

    Article  Google Scholar 

  • Molina-García AD, Sanz PD (2002) Anisakis simplex larva killed by high-hydrostatic-pressure processing. J Food Prot 65(2):383–388

    Article  PubMed  Google Scholar 

  • Mota MJ, Lopes RP, Delgadillo I et al (2013) Microorganisms under high pressure - adaptation, growth and biotechnological potential. Biotechnol Adv 31(8):1426–1434

    Article  CAS  PubMed  Google Scholar 

  • Mújica-Paz H, Valdez-Fragoso A, Samson TC et al (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4:969–985

    Article  Google Scholar 

  • Mutlu-Ingok A, Devecioglu D, Dikmeta DN et al (2020) Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules 25(20):4711–4760

    Article  CAS  PubMed Central  Google Scholar 

  • Nakayama A, Yano Y, Kobayashi S et al (1996) Comparison of pressure resistances of spores of six Bacillus strains with their heat resistance. Appl Environ Microbiol 62:3897–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikparvar B, Andreevskaya M, Duru IC et al (2021) Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing. BMC Genomics 22:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology 145(2):419–425

    Article  CAS  PubMed  Google Scholar 

  • Norton T, Sun DW (2008) Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1(1):2–34

    Article  Google Scholar 

  • Paredes-Sabja DM, Gonzalez MR, Sarker S et al (2007) Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. J Food Sci 72:202–206

    Article  CAS  Google Scholar 

  • Park SW, Sohn KH, Shin JH et al (2001) High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. Int J Food Sci Technol 36(7):775–781

    Google Scholar 

  • Patterson MF, Quinn M, Simpson R et al (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot 58:524–529

    Article  PubMed  Google Scholar 

  • Patterson MP, Mackle A, Linton M (2011) Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiol 28:1505–1508

    Article  CAS  PubMed  Google Scholar 

  • Pilavtepe-Çelik M, Balaban MO, Alpas H et al (2008) Image analysis based quantification of bacterial volume change with high hydrostatic pressure. J Food Sci 73(9):423–429

    Article  CAS  Google Scholar 

  • Rao J, Chen B, McClements DJ (2019) Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu Rev Food Sci Technol 10(1):365–387

    Article  CAS  PubMed  Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramaniam VM et al (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112

    Article  CAS  PubMed  Google Scholar 

  • Rendueles E, Omer MK, Alvseike O et al (2011) Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT Food Sci Technol 44(5):1251–1260

    Article  CAS  Google Scholar 

  • Research & Development Associates For Military Food & Packaging Systems (R&DA) (2009). http://www.militaryfood.org/. Accessed 20 June 2021

  • Ritz M, Freulet M, Orange N et al (2000) Effects of high hydrostatic pressure on membrane proteins of Salmonella Typhimurium. Int J Food Microbiol 55(1–3):115–119

    Article  CAS  PubMed  Google Scholar 

  • Ritz M, Tholozan JL, Federighi M et al (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67(5):2240–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robey M, Benito A, Hutson RH et al (2001) Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl Environ Microbiol 67(10):4901–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H, Fuwad A, Yoon S et al (2019) Biomimetic membranes with transmembrane proteins: state-of-the-art in transmembrane protein applications. Int J Mol Sci 20(6):1437

    Article  CAS  PubMed Central  Google Scholar 

  • Sato M, Tameike A, Kobori H et al (1996) Ultrastructural effects of pressure stress to Saccharomyces cerevisiae cell revealed by immunoelectron microscopy using frozen thin sectioning. Prog Biotechnol 13:109–112

    Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12,114

    Article  Google Scholar 

  • Seifu E, Buys EM, Donkin EF (2005) Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci Technol 16(4):137–154

    Article  CAS  Google Scholar 

  • Serment-Moreno V, Fuentes C, Guerrero-Beltrán JÁ et al (2017) A Gompertz model approach to microbial inactivation kinetics by high-pressure processing incorporating the initial counts, microbial quantification limit, and come-up time effects. Food Bioprocess Technol 10(8):1–14

    Article  CAS  Google Scholar 

  • Shigehisa T, Ohmori T, Saito A et al (1991) Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int J Food Microbiol 12(2–3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Oliveira AC, Vieira TCRG et al (2014) High-pressure chemical biology and biotechnology. Chem Rev 114(14):7239–7267

    Article  CAS  PubMed  Google Scholar 

  • Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett Appl Microbiol 25:48–53

    Article  CAS  PubMed  Google Scholar 

  • Smelt J, Hellemons JC, Wouters PC et al (2002) Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. Int J Food Microbiol 78(1–2):57–77

    Article  PubMed  Google Scholar 

  • Stewart CM, Dunne CP, Sikes A et al (2000) Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innov Food Sci Emerg Technol 1:49–56

    Article  CAS  Google Scholar 

  • Syed QA, Buffa M, Guamis B et al (2016) Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: a review. Crit Rev Food Sci Nutr 56(3):474–483

    Article  CAS  PubMed  Google Scholar 

  • The Nobel Prize in Physics (1946). https://www.nobelprize.org/prizes/physics/1946/summary. Accessed 10 July 2021

  • Tholozan JL, Ritz M, Jugiau F et al (2000) Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella Typhimurium. J Appl Microbiol 88(2):202–212

    Article  CAS  PubMed  Google Scholar 

  • Torres JA, Velazquez G (2008) Hydrostatic pressure processing of foods. In: Jun S, Irudayaraj J (eds) Food processing operations modeling: design and analysis. CRC Press, Boca Raton, FL, pp 173–212

    Google Scholar 

  • Uh JH, Jung YH, Lee YK et al (2010) Rescue of a cold-sensitive mutant at low temperatures by cold shock proteins from Polaribacter irgensii KOPRI 22228. J Microbiol 48(6):798

    Article  CAS  PubMed  Google Scholar 

  • Ulmer HM, Herberhold H, Fa Hsel S et al (2002) Effects of pressure-induced membrane phase transitions on inactivation of hora, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Appl Environ Microbiol 68(3):1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U. S. Department of Agricultural-Food Safety and Inspection Service (USDA-FSIS) (2004) https://www.fsis.usda.gov/. Accessed 21 November 2021

  • Valdez-Fragoso A, Mújica-Paz H, Welti-Chanes J et al (2010) Reaction kinetics at high pressure and temperature: effects on milk flavor volatiles and on chemical compounds with nutritional and safety importance in several foods. Food Bioprocess Technol 4(6):986–995

    Article  CAS  Google Scholar 

  • Vannier P, Michoud G, Oger P et al (2015) Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions. Res Microbiol 166(9):717–725

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jian P, Xie H et al (2010) Inactivation of Staphylococcus aureus and Escherichia coli by the synergistic action of high hydrostatic pressure. Int J Food Microbiol 144(1):118–125

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Huang HW, Hsu CP et al (2013) Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control 32(2):348–353

    Article  CAS  Google Scholar 

  • Wang H, Xie L, Luo H et al (2016) Bacterial cytoskeleton and implications for new antibiotic targets. J Drug Target 24(5):392–398

    Article  CAS  PubMed  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC et al (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175(22):7170–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wemekamp-Kamphuis HH, Karatzas AK, Wouters JA et al (2002) Enhanced levels of cold shock proteins in Listeria monocytogenes lo28 upon exposure to low temperature and high hydrostatic pressure. Appl Environ Microbiol 68(2):456–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters PC, Glaasker E, Smelt J (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl Environ Microbiol 64(2):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Forghani F, Daliri E et al (2020) Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 95:107–117

    Article  CAS  Google Scholar 

  • Wuytack EY, Diels A, Michiels CW (2002) Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. Int J Food Microbiol 77(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Rao L, Zhao L et al (2021) High pressure processing combined with selected hurdles: enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 20:1800–1828

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Liao X (2020) Research progress on the effect of pressurization and depressurization on high hydrostatic pressure sterilization. J CIFST 20(5):293–302

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y. (2022). Response of Foodborne Pathogens to High-Pressure Processing. In: Ding, T., Liao, X., Feng, J. (eds) Stress Responses of Foodborne Pathogens. Springer, Cham. https://doi.org/10.1007/978-3-030-90578-1_8

Download citation

Publish with us

Policies and ethics